## Lecture 9 ARMA Models: Properties, Identification, and Estimation

Reading: Bowerman, O'Connell, and Koehler (2005): Chapter 9.2-9.4; Capter 10.1; Cryer and Chen (2008): Chapter 4.4-4.6; Chapter 6.1-6.3

MATH 4070: Regression and Time-Series Analysis

ARMA Models: Properties, Identification, and Estimation



Properties of ARMA Models: Stationarity, Causality, and Invertibility

Fentative Model dentification Using ACF and PACF

Parameter Estimation

Whitney Huang Clemson University

## Agenda

# Properties of ARMA Models: Stationarity, Causality, and Invertibility



## Tentative Model Identification Using ACF and PACF



ARMA Models: Properties, Identification, and Estimation



Properties of ARMA Models: Stationarity, Causality, and Invertibility

Tentative Model dentification Using ACF and PACF

## ARMA(p, q) Processes

 $\{\eta_t\}$  is an ARMA(p, q) process if it satisfies

$$\eta_t - \sum_{i=1}^p \phi_i \eta_{t-i} = Z_t + \sum_{j=1}^q \theta_j Z_{t-j},$$

where  $\{Z_t\}$  is a WN $(0, \sigma^2)$  process.

• Let  $\phi(B) = 1 - \sum_{i=1}^{p} \phi_i B^i$  and  $\theta(B) = 1 + \sum_{j=1}^{q} \theta_j B^j$ . Then we can write it as

 $\phi(B)\eta_t = \theta(B)Z_t$ 





Properties of ARMA Models: Stationarity, Causality, and Invertibility

Tentative Model dentification Using ACF and PACF

## ARMA(p, q) Processes

 $\{\eta_t\}$  is an ARMA(p, q) process if it satisfies

$$\eta_t - \sum_{i=1}^p \phi_i \eta_{t-i} = Z_t + \sum_{j=1}^q \theta_j Z_{t-j},$$

where  $\{Z_t\}$  is a WN $(0, \sigma^2)$  process.

• Let  $\phi(B) = 1 - \sum_{i=1}^{p} \phi_i B^i$  and  $\theta(B) = 1 + \sum_{j=1}^{q} \theta_j B^j$ . Then we can write it as

 $\phi(B)\eta_t = \theta(B)Z_t$ 

• An ARMA(p, q) process  $\{\tilde{\eta}_t\}$  with mean  $\mu$  can be written as

 $\phi(B)(\tilde{\eta}_t - \mu) = \theta(B)Z_t$ 





Properties of ARMA Models: Stationarity, Causality, and Invertibility

Tentative Model Identification Using ACF and PACF

## A Stationary Solution to the ARMA Equation

A zero-mean ARMA process is stationary if it can be written as a linear process, i.e.,  $\eta_t = \psi(B)Z_t$ , where  $\psi(B) = \sum_{j=-\infty}^{\infty} \psi_j B^j$ for an absolutely summable sequence  $\{\psi_j\}$ 

 This only happens if one can "divide" by φ(B), i.e., it is stationary only if the following makes sense:

 $(\phi(B))^{-1} \phi(B)\eta_t = (\phi(B))^{-1} \theta(B)Z_t$  $\Rightarrow \eta_t = \underbrace{\frac{\theta(B)}{\phi(B)}}_{=\psi(B)}Z_t$ 

ARMA Models: Properties, Identification, and Estimation



Properties of ARMA Models: Stationarity, Causality, and Invertibility

Tentative Model dentification Using ACF and PACF

## A Stationary Solution to the ARMA Equation

A zero-mean ARMA process is stationary if it can be written as a linear process, i.e.,  $\eta_t = \psi(B)Z_t$ , where  $\psi(B) = \sum_{j=-\infty}^{\infty} \psi_j B^j$ for an absolutely summable sequence  $\{\psi_j\}$ 

• This only happens if one can "divide" by  $\phi(B)$ , i.e., it is stationary only if the following makes sense:

 $(\phi(B))^{-1} \phi(B)\eta_t = (\phi(B))^{-1} \theta(B)Z_t$  $\Rightarrow \eta_t = \underbrace{\frac{\theta(B)}{\phi(B)}}_{=\psi(B)} Z_t$ 

 Let's forget about B is the backshift operator and replace it with z. Now consider whether we can divide θ(z) by φ(z) ARMA Models: Properties, Identification, and Estimation



Properties of ARMA Models: Stationarity, Causality, and Invertibility

Tentative Model dentification Using ACF and PACF

• A root of the polynomial  $f(z) = \sum_{j=0}^{p} a_j z^j$  is a value  $\xi$  such that  $f(\xi) = 0 \Rightarrow$  it can be real-valued  $\mathbb{R}$  or complex-valued  $\mathbb{C}$ 

ARMA Models: Properties, Identification, and Estimation



Properties of ARMA Models: Stationarity, Causality, and Invertibility

Tentative Model dentification Using ACF and PACF

- A root of the polynomial  $f(z) = \sum_{j=0}^{p} a_j z^j$  is a value  $\xi$  such that  $f(\xi) = 0 \Rightarrow$  it can be real-valued  $\mathbb{R}$  or complex-valued  $\mathbb{C}$
- For example, a root can take the form ξ = a + b i for real number a and b. The modulus of a complex number |ξ| is defined by

$$|\xi| = \sqrt{a^2 + b^2}$$

ARMA Models: Properties, Identification, and Estimation



Properties of ARMA Models: Stationarity, Causality, and Invertibility

Fentative Model dentification Using ACF and PACF

- A root of the polynomial  $f(z) = \sum_{j=0}^{p} a_j z^j$  is a value  $\xi$  such that  $f(\xi) = 0 \Rightarrow$  it can be real-valued  $\mathbb{R}$  or complex-valued  $\mathbb{C}$
- For example, a root can take the form ξ = a + b i for real number a and b. The modulus of a complex number |ξ| is defined by

$$\xi| = \sqrt{a^2 + b^2}$$

• For any ARMA(*p*,*q*) process, a stationary and unique solution exists if and only if

$$\phi(z) = 1 - \phi_1 z - \dots - \phi_p z^p \neq 0,$$

for all  $|z| = 1 \Rightarrow$  None of the roots of the AR characteristic equation have a modulus of exactly 1

ARMA Models: Properties, Identification, and Estimation



Properties of ARMA Models: Stationarity, Causality, and Invertibility

Fentative Model dentification Using ACF and PACF

- A root of the polynomial  $f(z) = \sum_{j=0}^{p} a_j z^j$  is a value  $\xi$  such that  $f(\xi) = 0 \Rightarrow$  it can be real-valued  $\mathbb{R}$  or complex-valued  $\mathbb{C}$
- For example, a root can take the form ξ = a + b i for real number a and b. The modulus of a complex number |ξ| is defined by

$$\xi| = \sqrt{a^2 + b^2}$$

• For any ARMA(*p*,*q*) process, a stationary and unique solution exists if and only if

$$\phi(z) = 1 - \phi_1 z - \dots - \phi_p z^p \neq 0,$$

for all  $|z| = 1 \Rightarrow$  None of the roots of the AR characteristic equation have a modulus of exactly 1

ARMA Models: Properties, Identification, and Estimation



Properties of ARMA Models: Stationarity, Causality, and Invertibility

Fentative Model dentification Using ACF and PACF

- A root of the polynomial  $f(z) = \sum_{j=0}^{p} a_j z^j$  is a value  $\xi$  such that  $f(\xi) = 0 \Rightarrow$  it can be real-valued  $\mathbb{R}$  or complex-valued  $\mathbb{C}$
- For example, a root can take the form ξ = a + b i for real number a and b. The modulus of a complex number |ξ| is defined by

$$\xi| = \sqrt{a^2 + b^2}$$

• For any ARMA(*p*,*q*) process, a stationary and unique solution exists if and only if

$$\phi(z) = 1 - \phi_1 z - \dots - \phi_p z^p \neq 0,$$

for all  $|z| = 1 \Rightarrow$  None of the roots of the AR characteristic equation have a modulus of exactly 1

**Note**: Stationarity of the ARMA process has nothing to do with the MA polynomial!

ARMA Models: Properties, Identification, and Estimation



Properties of ARMA Models: Stationarity, Causality, and Invertibility

Fentative Model dentification Using ACF and PACF

## AR(4) Example

Consider the following AR(4) process

 $\eta_t = 2.7607\eta_{t-1} - 3.8106\eta_{t-2} + 2.6535\eta_{t-3} - 0.9238\eta_{t-4} + Z_t,$ 

the AR characteristic polynomial is

 $\phi(z) = 1 - 2.7607z + 3.8106z^2 - 2.6535z^3 + 0.9238z^4$ 

- Hard to find the roots of φ(z) –we use the polyroot function in R:
- Use Mod in R to calculate the modulus of the roots

## Conclusion:

ARMA Models: Properties, Identification, and Estimation



Properties of ARMA Models: Stationarity, Causality, and Invertibility

Tentative Model dentification Using ACF and PACF

An ARMA process is causal if there exists constants  $\{\psi_j\}$  with  $\sum_{j=0}^{\infty} |\psi_j| < 0$  and  $\eta_t = \sum_{j=0}^{\infty} \psi_j Z_{t-j}$ , that is, we can write  $\{\eta_t\}$  as an MA( $\infty$ ) process depending only on the current and past values of  $\{Z_t\}$ 

Equivalently, an ARMA process is causal if and only if

$$\phi(z) = 1 - \phi_1 z - \dots - \phi_p z^p \neq 0,$$

for all  $|z| \le 1 \Rightarrow$  None of the roots of the AR characteristic equation have a modulus less than 1

ARMA Models: Properties, Identification, and Estimation



Properties of ARMA Models: Stationarity, Causality, and Invertibility

Tentative Model dentification Using ACF and PACF

An ARMA process is causal if there exists constants  $\{\psi_j\}$  with  $\sum_{j=0}^{\infty} |\psi_j| < 0$  and  $\eta_t = \sum_{j=0}^{\infty} \psi_j Z_{t-j}$ , that is, we can write  $\{\eta_t\}$  as an MA( $\infty$ ) process depending only on the current and past values of  $\{Z_t\}$ 

Equivalently, an ARMA process is causal if and only if

$$\phi(z) = 1 - \phi_1 z - \dots - \phi_p z^p \neq 0,$$

for all  $|z| \le 1 \Rightarrow$  None of the roots of the AR characteristic equation have a modulus less than 1

 The previous AR(4) example is causal since each zero, ξ, of φ(·) is such that |ξ| > 1 ARMA Models: Properties, Identification, and Estimation



Properties of ARMA Models: Stationarity, Causality, and Invertibility

Tentative Model dentification Using ACF and PACF

An ARMA process is causal if there exists constants  $\{\psi_j\}$  with  $\sum_{j=0}^{\infty} |\psi_j| < 0$  and  $\eta_t = \sum_{j=0}^{\infty} \psi_j Z_{t-j}$ , that is, we can write  $\{\eta_t\}$  as an MA( $\infty$ ) process depending only on the current and past values of  $\{Z_t\}$ 

Equivalently, an ARMA process is causal if and only if

$$\phi(z) = 1 - \phi_1 z - \dots - \phi_p z^p \neq 0,$$

for all  $|z| \le 1 \Rightarrow$  None of the roots of the AR characteristic equation have a modulus less than 1

 The previous AR(4) example is causal since each zero, ξ, of φ(·) is such that |ξ| > 1 ARMA Models: Properties, Identification, and Estimation



Properties of ARMA Models: Stationarity, Causality, and Invertibility

Tentative Model dentification Using ACF and PACF

An ARMA process is causal if there exists constants  $\{\psi_j\}$  with  $\sum_{j=0}^{\infty} |\psi_j| < 0$  and  $\eta_t = \sum_{j=0}^{\infty} \psi_j Z_{t-j}$ , that is, we can write  $\{\eta_t\}$  as an MA( $\infty$ ) process depending only on the current and past values of  $\{Z_t\}$ 

Equivalently, an ARMA process is causal if and only if

$$\phi(z) = 1 - \phi_1 z - \dots - \phi_p z^p \neq 0,$$

for all  $|z| \le 1 \Rightarrow$  None of the roots of the AR characteristic equation have a modulus less than 1

 The previous AR(4) example is causal since each zero, ξ, of φ(·) is such that |ξ| > 1

**Note**: The causality of the ARMA process depends only on the AR polynomial!

ARMA Models: Properties, Identification, and Estimation



Properties of ARMA Models: Stationarity, Causality, and Invertibility

entative Model dentification Using ACF and PACF

An ARMA process is invertible if there exists constants  $\{\pi_j\}$  with  $\sum_{j=0}^{\infty} |\pi_j| < \infty$  and

$$Z_t = \sum_{j=0}^{\infty} \pi_j \eta_{t-j},$$

ARMA Models: Properties, Identification, and Estimation



Properties of ARMA Models: Stationarity, Causality, and Invertibility

Tentative Model Identification Using ACF and PACF

**Parameter Estimation** 

that is, we can write  $\{Z_t\}$  as an AR( $\infty$ ) process depending only on the current and past values of  $\{\eta_t\}$ 

A process is invertible if and only if

$$\theta(z) = 1 + \theta_1 z + \dots + \theta_q z^q \neq 0,$$

for all  $|z| \le 1 \Rightarrow$  None of the roots of the MA characteristic equation have a modulus less than 1

An ARMA process is invertible if there exists constants  $\{\pi_j\}$  with  $\sum_{j=0}^{\infty} |\pi_j| < \infty$  and

$$Z_t = \sum_{j=0}^{\infty} \pi_j \eta_{t-j},$$

ARMA Models: Properties, Identification, and Estimation



Properties of ARMA Models: Stationarity, Causality, and Invertibility

Tentative Model Identification Using ACF and PACF

**Parameter Estimation** 

that is, we can write  $\{Z_t\}$  as an AR( $\infty$ ) process depending only on the current and past values of  $\{\eta_t\}$ 

A process is invertible if and only if

$$\theta(z) = 1 + \theta_1 z + \dots + \theta_q z^q \neq 0,$$

for all  $|z| \le 1 \Rightarrow$  None of the roots of the MA characteristic equation have a modulus less than 1

An ARMA process

$$\eta_t - 0.5\eta_{t-1} = Z_t + 0.4Z_{t-1},$$

An ARMA process is invertible if there exists constants  $\{\pi_j\}$  with  $\sum_{j=0}^{\infty} |\pi_j| < \infty$  and

$$Z_t = \sum_{j=0}^{\infty} \pi_j \eta_{t-j},$$

ARMA Models: Properties, Identification, and Estimation



Properties of ARMA Models: Stationarity, Causality, and Invertibility

Tentative Model Identification Using ACF and PACF

**Parameter Estimation** 

that is, we can write  $\{Z_t\}$  as an AR( $\infty$ ) process depending only on the current and past values of  $\{\eta_t\}$ 

A process is invertible if and only if

$$\theta(z) = 1 + \theta_1 z + \dots + \theta_q z^q \neq 0,$$

for all  $|z| \le 1 \Rightarrow$  None of the roots of the MA characteristic equation have a modulus less than 1

An ARMA process

$$\eta_t - 0.5\eta_{t-1} = Z_t + 0.4Z_{t-1},$$

An ARMA process is invertible if there exists constants  $\{\pi_j\}$  with  $\sum_{j=0}^{\infty} |\pi_j| < \infty$  and

$$Z_t = \sum_{j=0}^{\infty} \pi_j \eta_{t-j},$$

that is, we can write  $\{Z_t\}$  as an AR( $\infty$ ) process depending only on the current and past values of  $\{\eta_t\}$ 

A process is invertible if and only if

$$\theta(z) = 1 + \theta_1 z + \dots + \theta_q z^q \neq 0,$$

for all  $|z| \le 1 \Rightarrow$  None of the roots of the MA characteristic equation have a modulus less than 1

An ARMA process

$$\eta_t - 0.5\eta_{t-1} = Z_t + 0.4Z_{t-1},$$

with  $\phi(z) = 1 - 0.5z$  and  $\theta(z) = 1 + 0.4z$  has a root of the MA characteristic polynomial at  $z = \frac{-1}{0.4} = -2.5$ 

ARMA Models: Properties, Identification, and Estimation



Properties of ARMA Models: Stationarity, Causality, and Invertibility

Tentative Model Identification Using ACF and PACF

## **Review of the Autocorrelation Function (ACF)**

The autocorrelation function (ACF) measures the correlation of a stationary time series  $\eta_t$  with its own lagged values

• The theoretical ACF for MA processes can be computed as  $\rho(h) = \frac{\sum_{j=0}^{q} \theta_{j} \theta_{j+h}}{\sum_{j=0}^{q} \theta_{j}^{2}}$ , and via the Yule-Walker equation for AR processes

ARMA Models: Properties, Identification, and Estimation



Properties of ARMA Models: Stationarity, Causality, and Invertibility

Tentative Model Identification Using ACF and PACF

## **Review of the Autocorrelation Function (ACF)**

The autocorrelation function (ACF) measures the correlation of a stationary time series  $\eta_t$  with its own lagged values

- The theoretical ACF for MA processes can be computed as  $\rho(h) = \frac{\sum_{j=0}^{q} \theta_{j} \theta_{j+h}}{\sum_{j=0}^{q} \theta_{j}^{2}}$ , and via the Yule-Walker equation for AR processes
- The ACF is useful in identifying the MA(q) order, as it cuts off after lag *q*





Properties of ARMA Models: Stationarity, Causality, and Invertibility

Fentative Model dentification Using ACF and PACF

## **Partial Autocorrelation Functions (PACF)**

The partial autocorrelation function (PACF) represents the partial correlation of a stationary time series  $\{\eta_t\}$  with its own lagged values, while regressing out the effects of the time series at all shorter lags

• The PACF at lag *h* is the autocorrelation between  $\eta_t$  and  $\eta_{t+h}$  with the linear dependence between  $\eta_t$  and  $\eta_{t+1}, \ldots, \eta_{t+h-1}$  removed

ARMA Models: Properties, Identification, and Estimation



Properties of ARMA Models: Stationarity, Causality, and Invertibility

Tentative Model Identification Using ACF and PACF

## **Partial Autocorrelation Functions (PACF)**

The partial autocorrelation function (PACF) represents the partial correlation of a stationary time series  $\{\eta_t\}$  with its own lagged values, while regressing out the effects of the time series at all shorter lags

- The PACF at lag *h* is the autocorrelation between  $\eta_t$  and  $\eta_{t+h}$  with the linear dependence between  $\eta_t$  and  $\eta_{t+1}, \ldots, \eta_{t+h-1}$  removed
- PACF plots are a commonly used tool for identifying the order of an AR model, as the theoretical PACF "shuts off" past the order of the model (see an example on the next slide)

ARMA Models: Properties, Identification, and Estimation



Properties of ARMA Models: Stationarity, Causality, and Invertibility

Fentative Model dentification Using ACF and PACF

## **Partial Autocorrelation Functions (PACF)**

The partial autocorrelation function (PACF) represents the partial correlation of a stationary time series  $\{\eta_t\}$  with its own lagged values, while regressing out the effects of the time series at all shorter lags

- The PACF at lag *h* is the autocorrelation between  $\eta_t$  and  $\eta_{t+h}$  with the linear dependence between  $\eta_t$  and  $\eta_{t+1}, \ldots, \eta_{t+h-1}$  removed
- PACF plots are a commonly used tool for identifying the order of an AR model, as the theoretical PACF "shuts off" past the order of the model (see an example on the next slide)
- One can use the function pacf in R to plot the PACF

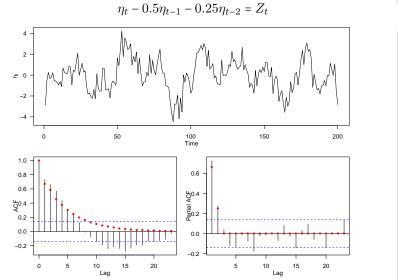
ARMA Models: Properties, Identification, and Estimation



Properties of ARMA Models: Stationarity, Causality, and Invertibility

Fentative Model dentification Using ACF and PACF

#### An Example of PACF Plot



ARMA Models: Properties, Identification, and Estimation



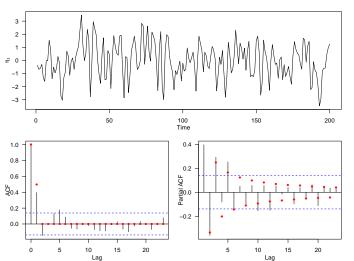
Properties of ARMA Models: Stationarity, Causality, and Invertibility

Tentative Model Identification Using ACF and PACF

Parameter Estimation

The theoretical ACF decays exponentially, while the PACF cuts off at lag 2  $\,$ 

#### **PACF Plot for a MA Process**



 $\eta_t = Z_t + Z_{t-1}$ 

ARMA Models: Properties, Identification, and Estimation



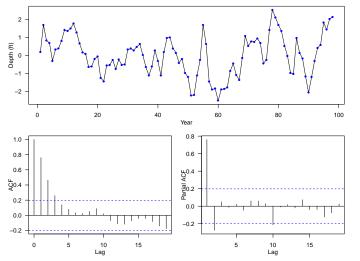
Properties of ARMA Models: Stationarity, Causality, and Invertibility

Tentative Model Identification Using ACF and PACF

Parameter Estimation

The theoretical ACF cuts off at lag 1, while the PACF decays exponentially

#### Lake Huron Series PACF Plot



ARMA Models: Properties, Identification, and Estimation

School of MATHEMATICAL AND STATISTICAL SCIENCES Clemator University

Properties of ARMA Models: Stationarity, Causality, and Invertibility

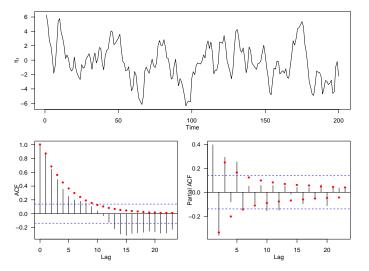
Tentative Model Identification Using ACF and PACF

Parameter Estimation

We can use both ACF and PACF plots to identify the potential ARMA model order

#### **PACF Plot for a ARMA Process**

$$\eta_t - 0.5\eta_{t-1} - 0.25\eta_{t-2} = Z_t + Z_{t-1}$$



Both the theoretical ACF and PACF decay exponentially

ARMA Models: Properties, Identification, and Estimation



Properties of ARMA Models: Stationarity, Causality, and Invertibility

Tentative Model Identification Using ACF and PACF

## Identifying Plausible Stationary ARMA Models

We can use the sample ACF and PACF to help identify plausible models:

| Model | ACF                     | PACF                    |
|-------|-------------------------|-------------------------|
|       |                         | tails off exponentially |
| AR(p) | tails off exponentially | cuts off after lag $p$  |

ARMA Models: Properties, Identification, and Estimation



Properties of ARMA Models: Stationarity, Causality, and Invertibility

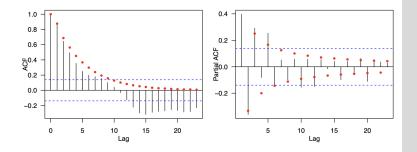
Tentative Model Identification Using ACF and PACF

## Identifying Plausible Stationary ARMA Models

We can use the sample ACF and PACF to help identify plausible models:

| Model |                         | PACF                    |
|-------|-------------------------|-------------------------|
|       |                         | tails off exponentially |
| AR(p) | tails off exponentially | cuts off after lag $p$  |

For ARMA(p, q) we will see a combination of the above



ARMA Models: Properties, Identification, and Estimation



Properties of ARMA Models: Stationarity, Causality, and Invertibility

Tentative Model Identification Using ACF and PACF

## **Estimation of the ARMA Process Parameters**

Suppose we choose a ARMA(p, q) model for { $\eta_t$ }

- Need to estimate the p + q + 1 parameters:
  - AR component  $\{\phi_1, \dots, \phi_p\}$
  - MA component  $\{\theta_1, \dots, \theta_q\}$
  - $\operatorname{Var}(Z_t) = \sigma^2$
- One strategy:
  - Do some preliminary estimation of the model parameters (e.g., via Yule-Walker estimates)
  - Follow-up with maximum likelihood estimation with Gaussian assumption





Properties of ARMA Models: Stationarity, Causality, and Invertibility

Tentative Model Identification Using ACF and PACF

## The Yule-Walker Method

Suppose  $\eta_t$  is a causal AR(*p*) process

$$\eta_t - \phi_1 \eta_{t-1} - \dots - \phi_p \eta_{t-p} = Z_t$$

To estimate the parameters  $\{\phi_1, \dots, \phi_p\}$ , we use a method of moments estimation scheme:

• Let  $h = 0, 1, \dots, p$ . We multiply  $\eta_{t-h}$  to both sides

$$\eta_t \eta_{t-h} - \phi_1 \eta_{t-1} \eta_{t-h} - \dots - \phi_p \eta_{t-p} \eta_{t-h} = Z_t \eta_{t-h}$$

• Taking expectations:

$$\mathbb{E}(\eta_t\eta_{t-h}) - \phi_1\mathbb{E}(\eta_{t-1}\eta_{t-h}) - \dots - \phi_p\mathbb{E}(\eta_{t-p}\eta_{t-h}) = \mathbb{E}(Z_t\eta_{t-h}),$$

we get 
$$\gamma(h) - \phi_1 \gamma(h-1) - \dots - \phi_p \gamma(h-p) = \mathbb{E}(Z_t \eta_{t-h})$$

ARMA Models: Properties, Identification, and Estimation



Properties of ARMA Models: Stationarity, Causality, and Invertibility

Tentative Model dentification Using ACF and PACF

## **The Yule-Walker Equations**

• When h = 0,  $\mathbb{E}(Z_t \eta_{t-h}) = \text{Cov}(Z_t, \eta_t) = \sigma^2$  (Why?) Therefore, we have

$$\gamma(0) - \sum_{j=1}^{p} \phi_j \gamma(j) = \sigma^2$$

When h > 0, Z<sub>t</sub> is uncorrelated with η<sub>t-h</sub> (because the assumption of causality), thus E(Z<sub>t</sub>η<sub>t-h</sub>) = 0 and we have

$$\gamma(h) - \sum_{j=1}^{p} \phi_j \gamma(h-j) = 0, \quad h = 1, 2, ..., p$$

• The Yule-Walker estimates are the solution of these equations when we replace  $\gamma(h)$  by  $\hat{\gamma}(h)$ 





Properties of ARMA Models: Stationarity, Causality, and Invertibility

Fentative Model dentification Using ACF and PACF

#### The Yule-Walker Equations in Matrix Form

Let  $\hat{\phi} = (\hat{\phi}_1, \cdots, \hat{\phi}_p)^T$  be an estimate for  $\phi = (\phi_1, \cdots, \phi_p)^T$  and let

$$\hat{\boldsymbol{\Gamma}} = \begin{bmatrix} \hat{\gamma}(0) & \hat{\gamma}(1) & \cdots & \hat{\gamma}(p-1) \\ \hat{\gamma}(1) & \hat{\gamma}(0) & \cdots & \hat{\gamma}(p-2) \\ \vdots & \vdots & \ddots & \vdots \\ \hat{\gamma}(p-1) & \hat{\gamma}(p-2) & \cdots & \hat{\gamma}(0) \end{bmatrix}.$$

Then the Yule-Walker estimates of  $\phi$  and  $\sigma^2$  are

 $\hat{\phi} = \hat{\Gamma}^{-1} \hat{\gamma},$ 

and

$$\hat{\sigma}^2 = \hat{\gamma}(0) - \hat{\phi}^T \hat{\gamma},$$

where  $\hat{\boldsymbol{\gamma}} = (\hat{\gamma}(1), \cdots, \hat{\gamma}(p))^T$ 

ARMA Models: Properties, Identification, and Estimation

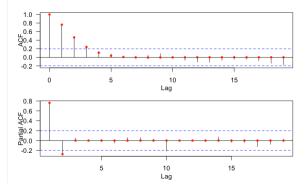


Properties of ARMA Models: Stationarity, Causality, and Invertibility

Tentative Model dentification Using ACF and PACF

#### Lake Huron Example in R

```
```{r}
YW_est <- ar(lm$residuals, aic = F, order.max = 2, method = "yw")
# plot sample and estimated acf/pacf
par(las = 1, mgp = c(2.2, 1, 0), mar = c(3.6, 3.6, 0.6, 0.6), mfrow = c(2, 1))
acf(lm$residuals)
acf_YWest <- ARMAacf(ar = YW_est$ar, lag.max = 23)
points(0:23, acf_YWest, col = "red", pch = 16, cex = 0.8)
pacf(lm$residuals)
pacf_YWest <- ARMAacf(ar = YW_est$ar, lag.max = 23, pacf = T)
points(1:23, pacf_YWest, col = "red", pch = 16, cex = 0.8)
```</pre>
```



ARMA Models: Properties, Identification, and Estimation



Properties of ARMA Models: Stationarity, Causality, and Invertibility

Tentative Model dentification Using ACF and PACF

## **Remarks on the Yule-Walker Method**

• For large sample size, Yule-Walker estimator have (approximately) the same sampling distribution as maximum likelihood estimator (MLE), but with small sample size Yule-Walker estimator can be far less efficient than the MLE ARMA Models: Properties, Identification, and Estimation



Properties of ARMA Models: Stationarity, Causality, and Invertibility

Tentative Model dentification Using ACF and PACF

<sup>&</sup>lt;sup>1</sup>See Least Squares Estimation in Chapter 7.2 of Cryer and Chan (2008).

## **Remarks on the Yule-Walker Method**

- For large sample size, Yule-Walker estimator have (approximately) the same sampling distribution as maximum likelihood estimator (MLE), but with small sample size Yule-Walker estimator can be far less efficient than the MLE
- The Yule-Walker method is a poor procedure for MA(q) and ARMA(p,q) processes with q > 0 (see Cryer Chan 2008, p. 150-151)

<sup>1</sup>See Least Squares Estimation in Chapter 7.2 of Cryer and Chan (2008).

ARMA Models: Properties, Identification, and Estimation

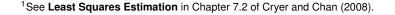


Properties of ARMA Models: Stationarity, Causality, and Invertibility

Tentative Model Identification Using ACF and PACF

# **Remarks on the Yule-Walker Method**

- For large sample size, Yule-Walker estimator have (approximately) the same sampling distribution as maximum likelihood estimator (MLE), but with small sample size Yule-Walker estimator can be far less efficient than the MLE
- The Yule-Walker method is a poor procedure for MA(q) and ARMA(p,q) processes with q > 0 (see Cryer Chan 2008, p. 150-151)
- We move on the more versatile and popular method for estimating ARMA(p,q) parameters-maximum likelihood estimation<sup>1</sup>



ARMA Models: Properties, Identification, and Estimation



Properties of ARMA Models: Stationarity, Causality, and Invertibility

Fentative Model dentification Using ACF and PACF

• The setup:

ARMA Models: Properties, Identification, and Estimation



Properties of ARMA Models: Stationarity, Causality, and Invertibility

Tentative Model dentification Using ACF and PACF

- The setup:
  - Model:  $X = (X_1, X_2, \dots, X_n)$  has joint probability density function  $f(x; \omega)$  where  $\omega = (\omega_1, \omega_2, \dots, \omega_p)$  is a vector of p parameters





Properties of ARMA Models: Stationarity, Causality, and Invertibility

Fentative Model dentification Using ACF and PACF

- The setup:
  - Model:  $X = (X_1, X_2, \dots, X_n)$  has joint probability density function  $f(x; \omega)$  where  $\omega = (\omega_1, \omega_2, \dots, \omega_p)$  is a vector of p parameters
  - Data:  $x = (x_1, x_2, ..., x_n)$

ARMA Models: Properties, Identification, and Estimation



Properties of ARMA Models: Stationarity, Causality, and Invertibility

Fentative Model dentification Using ACF and PACF

- The setup:
  - Model:  $X = (X_1, X_2, \dots, X_n)$  has joint probability density function  $f(x; \omega)$  where  $\omega = (\omega_1, \omega_2, \dots, \omega_p)$  is a vector of p parameters
  - Data:  $x = (x_1, x_2, ..., x_n)$
- The likelihood function is defined as the the "likelihood" of the data, x, given the parameters, ω

$$L_n(oldsymbol{\omega})$$
 =  $f(oldsymbol{x};oldsymbol{\omega})$ 

ARMA Models: Properties, Identification, and Estimation



Properties of ARMA Models: Stationarity, Causality, and Invertibility

Fentative Model dentification Using ACF and PACF

- The setup:
  - Model:  $X = (X_1, X_2, \dots, X_n)$  has joint probability density function  $f(x; \omega)$  where  $\omega = (\omega_1, \omega_2, \dots, \omega_p)$  is a vector of p parameters
  - Data:  $x = (x_1, x_2, \dots, x_n)$
- The likelihood function is defined as the the "likelihood" of the data, x, given the parameters,  $\omega$

$$L_n(\boldsymbol{\omega}) = f(\boldsymbol{x}; \boldsymbol{\omega})$$

 The maximum likelihood estimate (MLE) is the value of ω which maximizes the likelihood, L<sub>n</sub>(ω), of the data x:

$$\hat{\boldsymbol{\omega}} = \operatorname*{argmax}_{\boldsymbol{\omega}} L_n(\boldsymbol{\omega}).$$

It is equivalent (and often easier) to maximize the log likelihood,

$$\ell_n({oldsymbol \omega})$$
 = log  $L_n({oldsymbol \omega})$ 

ARMA Models: Properties, Identification, and Estimation



Properties of ARMA Models: Stationarity, Causality, and Invertibility

Fentative Model dentification Using ACF and PACF

Suppose  $\{X_t\}$  be a Gaussian i.i.d. process with mean  $\mu$  and variance  $\sigma^2$ . We observe a time series  $\mathbf{x} = (x_1, \dots, x_n)^T$ .

The likelihood function is

$$L_{n}(\mu, \sigma^{2}) = f(\boldsymbol{x}|\mu, \sigma^{2})$$
  
=  $\prod_{t=1}^{n} f(x_{t}|\mu, \sigma)$   
=  $\prod_{t=1}^{n} \left\{ \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left[-\frac{(x_{t}-\mu)^{2}}{2\sigma^{2}}\right] \right\}$   
=  $(2\pi)^{-n/2} (\sigma^{2})^{-n/2} \exp\left[-\frac{\sum_{t=1}^{n} (x_{t}-\mu)^{2}}{2\sigma^{2}}\right]$ 

ARMA Models: Properties, Identification, and Estimation



Properties of ARMA Models: Stationarity, Causality, and Invertibility

Fentative Model dentification Using ACF and PACF

Suppose  $\{X_t\}$  be a Gaussian i.i.d. process with mean  $\mu$  and variance  $\sigma^2$ . We observe a time series  $\mathbf{x} = (x_1, \dots, x_n)^T$ .

The likelihood function is

$$L_{n}(\mu, \sigma^{2}) = f(\boldsymbol{x}|\mu, \sigma^{2})$$
  
=  $\prod_{t=1}^{n} f(x_{t}|\mu, \sigma)$   
=  $\prod_{t=1}^{n} \left\{ \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left[-\frac{(x_{t}-\mu)^{2}}{2\sigma^{2}}\right] \right\}$   
=  $(2\pi)^{-n/2} (\sigma^{2})^{-n/2} \exp\left[-\frac{\sum_{t=1}^{n} (x_{t}-\mu)^{2}}{2\sigma^{2}}\right]$ 

The log-likelihood function is

$$\ell_n(\mu, \sigma^2) = \log L_n(\mu, \sigma^2) = -\frac{n}{2} \log(2\pi) - \frac{n}{2} \log(\sigma^2) - \frac{\sum_{t=1}^n (x_t - \mu)^2}{2\sigma^2}$$

ARMA Models: Properties, Identification, and Estimation



Properties of ARMA Models: Stationarity, Causality, and Invertibility

Fentative Model dentification Using ACF and PACF

Suppose  $\{X_t\}$  be a Gaussian i.i.d. process with mean  $\mu$  and variance  $\sigma^2$ . We observe a time series  $\mathbf{x} = (x_1, \dots, x_n)^T$ .

The likelihood function is

$$L_{n}(\mu, \sigma^{2}) = f(\boldsymbol{x}|\mu, \sigma^{2})$$
  
=  $\prod_{t=1}^{n} f(x_{t}|\mu, \sigma)$   
=  $\prod_{t=1}^{n} \left\{ \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left[-\frac{(x_{t}-\mu)^{2}}{2\sigma^{2}}\right] \right\}$   
=  $(2\pi)^{-n/2} (\sigma^{2})^{-n/2} \exp\left[-\frac{\sum_{t=1}^{n} (x_{t}-\mu)^{2}}{2\sigma^{2}}\right]$ 

The log-likelihood function is

$$\ell_n(\mu, \sigma^2) = \log L_n(\mu, \sigma^2) = -\frac{n}{2} \log(2\pi) - \frac{n}{2} \log(\sigma^2) - \frac{\sum_{t=1}^n (x_t - \mu)^2}{2\sigma^2}$$

ARMA Models: Properties, Identification, and Estimation



Properties of ARMA Models: Stationarity, Causality, and Invertibility

Fentative Model dentification Using ACF and PACF

Suppose  $\{X_t\}$  be a Gaussian i.i.d. process with mean  $\mu$  and variance  $\sigma^2$ . We observe a time series  $\mathbf{x} = (x_1, \dots, x_n)^T$ .

The likelihood function is

$$L_{n}(\mu, \sigma^{2}) = f(\boldsymbol{x}|\mu, \sigma^{2})$$
  
=  $\prod_{t=1}^{n} f(x_{t}|\mu, \sigma)$   
=  $\prod_{t=1}^{n} \left\{ \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left[-\frac{(x_{t}-\mu)^{2}}{2\sigma^{2}}\right] \right\}$   
=  $(2\pi)^{-n/2} (\sigma^{2})^{-n/2} \exp\left[-\frac{\sum_{t=1}^{n} (x_{t}-\mu)^{2}}{2\sigma^{2}}\right]$ 

The log-likelihood function is

$$\ell_n(\mu, \sigma^2) = \log L_n(\mu, \sigma^2) = -\frac{n}{2} \log(2\pi) - \frac{n}{2} \log(\sigma^2) - \frac{\sum_{t=1}^n (x_t - \mu)^2}{2\sigma^2}$$

 $\Rightarrow \hat{\mu}_{\text{MLE}} = \frac{\sum_{t=1}^{n} X_t}{n} = \bar{X}, \quad \hat{\sigma}_{\text{MLE}}^2 = \frac{\sum_{t=1}^{n} (X_t - \bar{X})^2}{n}$ 





Properties of ARMA Models: Stationarity, Causality, and Invertibility

Tentative Model dentification Using ACF and PACF

# Likelihood for Stationary Gaussian Time Series Models

Suppose  $\{X_t\}$  be a mean zero stationary Gaussian time series with ACVF  $\gamma(h)$ . If  $\gamma(h)$  depends on p parameters,  $\boldsymbol{\omega} = (\omega_1, \dots, \omega_p)$ 

• The likelihood of the data  $x = (x_1, \dots, x_n)$  given the parameters  $\omega$  is

$$L_n(\boldsymbol{\omega}) = (2\pi)^{-n/2} |\boldsymbol{\Gamma}|^{-1/2} \exp\left(-\frac{1}{2} \boldsymbol{x}^T \boldsymbol{\Gamma}^{-1} \boldsymbol{x}\right),$$

where  $\Gamma$  is the covariance matrix of  $X = (X_1, \dots, X_n)^T$ ,  $|\Gamma|$  is the determinant of the matrix  $\Gamma$ , and  $\Gamma^{-1}$  is the inverse of the matrix  $\Gamma$ 

The log-likelihood is

$$\ell_n(\boldsymbol{\theta}) = -\frac{n}{2}\log(2\pi) - \frac{1}{2}\log|\boldsymbol{\Gamma}| - \frac{1}{2}\boldsymbol{x}^T\boldsymbol{\Gamma}^{-1}\boldsymbol{x}$$

Typically need to solve it numerically





Properties of ARMA Models: Stationarity, Causality, and Invertibility

Tentative Model dentification Using ACF and PACF

# **Decomposing Joint Density into Conditional Densities**

A joint distribution can be represented as the product of conditionals and a marginal distribution

• The simple version for n = 2 is:

 $f(x_1, x_2) = f(x_2|x_1)f(x_1)$ 





Properties of ARMA Models: Stationarity, Causality, and Invertibility

Tentative Model Identification Using ACF and PACF

# **Decomposing Joint Density into Conditional Densities**

A joint distribution can be represented as the product of conditionals and a marginal distribution

• The simple version for n = 2 is:

$$f(x_1, x_2) = f(x_2|x_1)f(x_1)$$

 Extending for general n we get the following expression for the likelihood:

$$L_n(\boldsymbol{\theta}) = f(\boldsymbol{x}; \boldsymbol{\theta}) = f(x_1) \prod_{t=2}^n f(x_t | x_{t-1}, \cdots, x_1; \boldsymbol{\theta}),$$

and the log-likelihood is

$$\ell_n(\boldsymbol{\theta}) = \log f(\boldsymbol{x}; \boldsymbol{\theta}) = \log(f(x_1)) + \sum_{t=2}^n \log f(x_t | x_{t-1}, \cdots, x_1; \boldsymbol{\theta}).$$

ARMA Models: Properties, Identification, and Estimation



Properties of ARMA Models: Stationarity, Causality, and Invertibility

Tentative Model Identification Using ACF and PACF

Let  $\{\eta_1, \eta_2, \cdots, \eta_n\}$  be a realization of a zero-mean stationary AR(1) Gaussian time series. Let  $\theta = (\phi, \sigma^2)$ 

$$\ell_n(\boldsymbol{\theta}) = \underbrace{\log(f(\eta_1))}_{\ell_{n,1}} + \underbrace{\sum_{t=2}^n \log f(\eta_t | \eta_{t-1}, \dots, \eta_1; \boldsymbol{\theta})}_{\ell_{n,2}}.$$

ARMA Models: Properties, Identification, and Estimation



Properties of ARMA Models: Stationarity, Causality, and Invertibility

Fentative Model dentification Using ACF and PACF

Let  $\{\eta_1, \eta_2, \dots, \eta_n\}$  be a realization of a zero-mean stationary AR(1) Gaussian time series. Let  $\theta = (\phi, \sigma^2)$ 

$$\ell_n(\boldsymbol{\theta}) = \underbrace{\log(f(\eta_1))}_{\ell_{n,1}} + \underbrace{\sum_{t=2}^n \log f(\eta_t | \eta_{t-1}, \cdots, \eta_1; \boldsymbol{\theta})}_{\ell_{n,2}}.$$

Note that for  $t \ge 2$ ,  $f(\eta_t | \eta_{t-1}, \dots, \eta_1) = f(\eta_t | \eta_{t-1})$ , where  $[\eta_t | \eta_{t-1}] \sim N(\phi \eta_{t-1}, \sigma^2) \Rightarrow \ell_{n,2} =$ 

$$-\frac{(n-1)}{2}\log 2\pi - \frac{(n-1)}{2}\log \sigma^2 - \frac{\sum_{t=2}^n (\eta_t - \phi\eta_{t-1})^2}{2\sigma^2}$$



Properties of ARMA Models: Stationarity, Causality, and

Fentative Model dentification Using ACF and PACF

Let  $\{\eta_1, \eta_2, \dots, \eta_n\}$  be a realization of a zero-mean stationary AR(1) Gaussian time series. Let  $\theta = (\phi, \sigma^2)$ 

$$\ell_n(\boldsymbol{\theta}) = \underbrace{\log(f(\eta_1))}_{\ell_{n,1}} + \underbrace{\sum_{t=2}^n \log f(\eta_t | \eta_{t-1}, \cdots, \eta_1; \boldsymbol{\theta})}_{\ell_{n,2}}.$$

Note that for  $t \ge 2$ ,  $f(\eta_t | \eta_{t-1}, \dots, \eta_1) = f(\eta_t | \eta_{t-1})$ , where  $[\eta_t | \eta_{t-1}] \sim N(\phi \eta_{t-1}, \sigma^2) \Rightarrow \ell_{n,2} =$ 

$$-\frac{(n-1)}{2}\log 2\pi - \frac{(n-1)}{2}\log \sigma^2 - \frac{\sum_{t=2}^n (\eta_t - \phi\eta_{t-1})^2}{2\sigma^2}$$

Also, we know  $[\eta_1] \sim N\left(0, \frac{\sigma^2}{(1-\phi^2)}\right) \Rightarrow \ell_{1,n} =$ 

$$\frac{-\log 2\pi}{2} - \frac{\log \sigma^2}{2} + \frac{\log(1-\phi^2)}{2} - \frac{(1-\phi^2)\eta_1^2}{2\sigma^2}$$

ARMA Models: Properties, Identification, and Estimation



Properties of ARMA Models: Stationarity, Causality, and Invertibility

Tentative Model dentification Using ACF and PACF

Let  $\{\eta_1, \eta_2, \dots, \eta_n\}$  be a realization of a zero-mean stationary AR(1) Gaussian time series. Let  $\theta = (\phi, \sigma^2)$ 

$$\ell_n(\boldsymbol{\theta}) = \underbrace{\log(f(\eta_1))}_{\ell_{n,1}} + \underbrace{\sum_{t=2}^n \log f(\eta_t | \eta_{t-1}, \cdots, \eta_1; \boldsymbol{\theta})}_{\ell_{n,2}}.$$

Note that for  $t \ge 2$ ,  $f(\eta_t | \eta_{t-1}, \dots, \eta_1) = f(\eta_t | \eta_{t-1})$ , where  $[\eta_t | \eta_{t-1}] \sim N(\phi \eta_{t-1}, \sigma^2) \Rightarrow \ell_{n,2} =$ 

$$-\frac{(n-1)}{2}\log 2\pi - \frac{(n-1)}{2}\log \sigma^2 - \frac{\sum_{t=2}^n (\eta_t - \phi\eta_{t-1})^2}{2\sigma^2}$$

Also, we know  $[\eta_1] \sim N\left(0, \frac{\sigma^2}{(1-\phi^2)}\right) \Rightarrow \ell_{1,n} =$ 

$$\frac{-\log 2\pi}{2} - \frac{\log \sigma^2}{2} + \frac{\log(1-\phi^2)}{2} - \frac{(1-\phi^2)\eta_1^2}{2\sigma^2}$$

$$\Rightarrow \ell_n(\theta) = -\frac{n}{2}\log 2\pi - \frac{n}{2}\log \sigma^2 - \frac{\sum_{t=2}^n (\eta_t - \phi\eta_{t-1})^2}{2\sigma^2} + \frac{\log(1 - \phi^2)}{2} - \frac{(1 - \phi^2)\eta_1^2}{2\sigma^2}$$

ARMA Models: Properties, Identification, and Estimation



Properties of ARMA Models: Stationarity, Causality, and Invertibility

Fentative Model dentification Using ACF and PACF

# AR(1) Log-likelihood Cont'd

$$\ell_n(\theta) = -\frac{n}{2}\log 2\pi - \frac{n}{2}\log \sigma^2 + \frac{\log(1-\phi^2)}{2} - \frac{S(\phi)}{2\sigma^2},$$
  
where  $S(\phi) = \sum_{t=2}^n (\eta_t - \phi\eta_{t-1})^2 + (1-\phi^2)\eta_1^2$ 

 For given value of φ, ℓ<sub>n</sub>(φ, σ<sup>2</sup>) can be maximized analytically with respect to σ<sup>2</sup>

$$\hat{\sigma}^2 = \frac{S(\hat{\phi})}{n}$$





Properties of ARMA Models: Stationarity, Causality, and Invertibility

Tentative Model dentification Using ACF and PACF

# AR(1) Log-likelihood Cont'd

$$\ell_n(\theta) = -\frac{n}{2}\log 2\pi - \frac{n}{2}\log \sigma^2 + \frac{\log(1-\phi^2)}{2} - \frac{S(\phi)}{2\sigma^2},$$
  
where  $S(\phi) = \sum_{t=2}^n (\eta_t - \phi\eta_{t-1})^2 + (1-\phi^2)\eta_1^2$ 

 For given value of φ, ℓ<sub>n</sub>(φ, σ<sup>2</sup>) can be maximized analytically with respect to σ<sup>2</sup>

$$\hat{\sigma}^2 = \frac{S(\hat{\phi})}{n}$$

Estimation of φ can be simplified by maximizing the conditional sum-of-squares (Σ<sup>n</sup><sub>t=2</sub>(η<sub>t</sub> − φη<sub>t-1</sub>)<sup>2</sup>)

ARMA Models: Properties, Identification, and Estimation



Properties of ARMA Models: Stationarity, Causality, and Invertibility

Fentative Model dentification Using

## arima in R with the Lake Huron Example

#### arima: ARIMA Modelling of Time Series

#### Description

Fit an ARIMA model to a univariate time series.

#### Usage

ariaals, order = c(BL, BL, BL), sessonal = Lisk(roder = c(BL, BL, BL), period = NA), xreg = NULL, include.mean = TNUE, trade = MULL, init = NAUL, nethod = c(CSS=ML<sup>-</sup>, ML<sup>-</sup>, CSS<sup>-</sup>), n.cond, SSinit = c(CGArder1300F, "Messignal2011"), optim.nethod = "MSG<sup>-</sup>, Nethod = c(SS), heps = 165) ARMA Models: Properties, Identification, and Estimation



Properties of ARMA Models: Stationarity, Causality, and Invertibility

Tentative Model Identification Using ACF and PACF

## arima in R with the Lake Huron Example

#### arima: ARIMA Modelling of Time Series

#### Description

Fit an ARIMA model to a univariate time series

#### Usage

arias(x, order = c(Hu, HL, NL), seasonal = list(rofer = c(HL, HL, HL), period = NA), xreg = NULL, include.mean = TRUE, transform.pars = TRUE, frads = NULL, init = NULL, init = NULL, init = NULL, init = NULL, nethed = c("CSS-HL", "NL", "CSS"), n.cond, SSinit = c("CSS-HL", "NL", "CSS"), n.cond, SSinit = c("CSS-HL", "NL", "CSS"), n.cond, optim.nethod = "BFC", optim.nethod = "BFC", NL = SSINT = c("CS", NL = SSINT = CSS"), n.cond,

# ```{r}

```
(MLE_est1 <- arima(lm$residuals, order = c(2, 0, 0), method = "ML"))
```

```
Call:
arima(x = lm$residuals, order = c(2, 0, 0), method = "ML")
```

#### Coefficients:

|      | ar1    | ar2     | intercept |
|------|--------|---------|-----------|
|      | 1.0047 | -0.2919 | 0.0197    |
| s.e. | 0.0977 | 0.1004  | 0.2350    |

sigma^2 estimated as 0.4571: log likelihood = -101.25, aic = 210.5

ARMA Models: Properties, Identification, and Estimation



Properties of ARMA Models: Stationarity, Causality, and Invertibility

Tentative Model dentification Using ACF and PACF