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where {Z;} is a WN(0, 0%) process.

o Let¢(B)=1-% ¢;B and§(B) =1+x7,6;B’. Then
we can write it as

¢(B)n: = 0(B)Z;
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where {Z,} is a WN(0, 0%) process.

o Let¢(B)=1-% ¢;B and§(B) =1+x7,6;B’. Then
we can write it as

¢(B)n: = 0(B)Z;

@ An ARMA(p, q) process {7;} with mean p can be written as

(B)(7: — p) = 0(B) Z;
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A Stationary Solution to the ARMA Equation

A zero-mean ARMA process is stationary if it can be written as
a linear process, i.e., n; = ¢(B)Z;, where ¢(B) = 72 _ ¢; B?
for an absolutely summable sequence {v;}

@ This only happens if one can “divide” by ¢(B), i.e., itis
stationary only if the following makes sense:

(6(B))™" ¢(B)m = (6(B))"' 0(B)Z,
0(B)
¢(B)

—

=¢(B)

Zy

Nt =
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A zero-mean ARMA process is stationary if it can be written as g8y o
a linear process, i.e., 1 = ¥(B)Z;, where ¢)(B) = X2 _ ;B Q@ s s
for an absolutely summable sequence {v;}

Properties of ARMA
Models: Stationarity,
Causality, and

@ This only happens if one can “divide” by ¢(B), i.e., itis e
stationary only if the following makes sense:

(6(B))™" ¢(B)m = (6(B))"' 0(B)Z,
0(B)
¢(B)

—

=¢(B)

Nt = Zy

o Let’s forget about B is the backshift operator and replace it
with z. Now consider whether we can divide 0(z) by ¢(z)
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Roots of the AR Characteristic Polynomial and Stationarity

@ A root of the polynomial f(z) = Zf=0 a;z) is a value ¢ such

that f(¢) = 0 = it can be real-valued R or complex-valued
C

@ For example, a root can take the form & = a + b1 for real

number a and b. The modulus of a complex number |¢] is
defined by

€] = Va2 + b2
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Roots of the AR Characteristic Polynomial and Stationarity
@ A root of the polynomial f(z) = Zf=0 a;z) is a value ¢ such

that f(¢) = 0 = it can be real-valued R or complex-valued
C

@ For example, a root can take the form & = a + b1 for real
number @ and b. The modulus of a complex number [¢] is

defined by
= Va2 + 22

@ For any ARMA(p,q) process, a stationary and unique
solution exists if and only if

P(2) =1-¢1z— = p2" 20,

for all |z| =1 = None of the roots of the AR characteristic
equation have a modulus of exactly 1
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Roots of the AR Characteristic Polynomial and Stationarity
@ A root of the polynomial f(z) = Zf=0 a;z) is a value ¢ such

that f(¢) = 0 = it can be real-valued R or complex-valued
C

@ For example, a root can take the form & = a + b1 for real
number @ and b. The modulus of a complex number [¢] is

defined by
= Va2 + 22

@ For any ARMA(p,q) process, a stationary and unique
solution exists if and only if

P(2) =1-¢1z— = p2" 20,

for all |z| =1 = None of the roots of the AR characteristic
equation have a modulus of exactly 1

Note: Stationarity of the ARMA process has nothing to
do with the MA polynomial!
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AR(4) Example

Consider the following AR(4) process

e = 2.7607n,_1 — 3.81067,_5 + 2.6535n,_5 — 0.9238n,_4 + Zi,

the AR characteristic polynomial is

#(z) =1-2.7607z + 3.81062° - 2.65352> + 0.92382"

@ Hard to find the roots of ¢(z) —we use the polyroot
function in R:

@ Use Mod in R to calculate the modulus of the roots

@ Conclusion:
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Causal ARMA Processes

An ARMA process is causal if there exists constants {«;} with
Yicoltil<0and n, = X727, that is, we can write {n;} as

an MA(co) process depending only on the current and past
values of {Z;}

@ Equivalently, an ARMA process is causal if and only if
() = 1= g1z == 42" %0,

for all |z] < 1 = None of the roots of the AR characteristic
equation have a modulus less than 1
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Causal ARMA Processes
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@ Equivalently, an ARMA process is causal if and only if
() = 1= g1z == 42" %0,

for all |z] < 1 = None of the roots of the AR characteristic
equation have a modulus less than 1

@ The previous AR(4) example is causal since each zero, £
of ¢(-) is such that [¢] > 1
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Causal ARMA Processes

ARMA Models:

Properties,
Identification, and
An ARMA process is causal if there exists constants {«;} with e
Zolvil<0and n, = X321, 2, that is, we can write {n;} as ‘1 ?Tﬂfs‘%‘lé‘}l“?cﬁé‘#é’a
an MA(co) process depending only on the current and past
values of {Z;}

Properties of ARMA
Models: Stationarity,
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@ Equivalently, an ARMA process is causal if and only if
() = 1= g1z == 42" %0,

for all |z] < 1 = None of the roots of the AR characteristic
equation have a modulus less than 1

@ The previous AR(4) example is causal since each zero, £
of ¢(-) is such that [¢] > 1

Note: The causality of the ARMA process depends only
on the AR polynomial!




Invertible ARMA Processes

An ARMA process is invertible if there exists constants {r;}
with 372, || < oo and

oo
Zt = Z T5Mt—j5
J=0

that is, we can write {Z;} as an AR(c0) process depending only
on the current and past values of {n;}

@ A process is invertible if and only if
0(2)=1+012+-+6427+#0,

for all |z < 1 = None of the roots of the MA characteristic
equation have a modulus less than 1
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that is, we can write {Z;} as an AR(

oo) process depending only
on the current and past values of {n;}

@ A process is invertible if and only if

oo
Zy= ) Wi
p)

0(2)=1+012+-+6427+#0,

for all |z < 1 = None of the roots of the MA characteristic
equation have a modulus less than 1
@ An ARMA process

- 0.577,5_1 = Zt + 0.42,5_]_7

9.8



Invertible ARMA Processes ARMA Models:

Properties,
An ARMA process is invertible if there exists constants {r;} “ Estimation
with 372, || < oo and

Estimation

ols | MATHEMAIICA[ o

" STATISTCALSC

Properties of ARMA
Models: Stationarity,
Causality, and

Invertibility
that is, we can write {Z;} as an AR(

oo) process depending only
on the current and past values of {n;}

@ A process is invertible if and only if

oo
Zy= ) Wi
p)

0(2)=1+012+-+6427+#0,

for all |z < 1 = None of the roots of the MA characteristic
equation have a modulus less than 1
@ An ARMA process

- 0.577,5_1 = Zt + 0.42,5_]_7

9.8



Invertible ARMA Processes

An ARMA process is invertible if there exists constants {r;}
with 372, || < oo and

oo
Zt = Z T5Mt—j5
J=0

that is, we can write {Z;} as an AR(c0) process depending only
on the current and past values of {n;}

@ A process is invertible if and only if
0(2)=1+012+-+6427+#0,

for all |z < 1 = None of the roots of the MA characteristic
equation have a modulus less than 1

@ An ARMA process

- 0.577,5_1 = Zt + 0.42,5_]_7

with ¢(z) =1-0.5z and 6(z) = 1 + 0.4z has a root of the MA

characteristic polynomial at z = 7% = -2.5
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Review of the Autocorrelation Function (ACF) e
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The autocorrelation function (ACF) measures the correlation of
a stationary time series n; with its own lagged values

Tentative Model
Identification Using
ACF and PACF

@ The theoretical ACF for MA processes can be computed

as p(h) = ﬂ , and via the Yule-Walker equation for
AR processes
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The autocorrelation function (ACF) measures the correlation of
a stationary time series 7, with its own lagged values

Tentative Model
Identification Using
ACF and PACF

@ The theoretical ACF for MA processes can be computed
as p(h) = 7‘9 Oysh

, and via the Yule-Walker equation for
AR processes

@ The ACF is useful in identifying the MA(q) order, as it cuts
off after lag ¢
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Partial Autocorrelation Functions (PACF)

The partial autocorrelation function (PACF) represents the
partial correlation of a stationary time series {n; } with its own

lagged values, while regressing out the effects of the time
series at all shorter lags

@ The PACF at lag h is the autocorrelation between 7, and
e+, With the linear dependence between 7, and
N+1, - - - Me+h—1 F€MoOved
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Partial Autocorrelation Functions (PACF) e
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partial correlation of a stationary time series {n; } with its own

lagged values, while regressing out the effects of the time

series at all shorter lags
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@ The PACF at lag & is the autocorrelation between 7, and e
e+, With the linear dependence between 7, and
N+1, - - - Me+h—1 F€MoOved

@ PACF plots are a commonly used tool for identifying the
order of an AR model, as the theoretical PACF “shuts off”

past the order of the model (see an example on the next
slide)



Partial Autocorrelation Functions (PACF) e

Properties,
Identification, and
Estimation

The.partial aut.ocorrelation' functiqn (PACE) represelnts'the " w;nmga
partial correlation of a stationary time series {n; } with its own

lagged values, while regressing out the effects of the time

series at all shorter lags

Tentative Model
Identification Using
@ The PACF at lag h is the autocorrelation between 7, and e
e+, With the linear dependence between 7, and
Mit1s -+ Nesn—1 F€MoOved

@ PACF plots are a commonly used tool for identifying the
order of an AR model, as the theoretical PACF “shuts off”

past the order of the model (see an example on the next
slide)

@ One can use the function pacf in R to plot the PACF
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The theoretical ACF decays exponentially, while the PACF cuts
off at lag 2



PACF Plot for a MA Process
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Lake Huron Series PACF Plot
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We can use both ACF and PACF plots to identify the po-
tential ARMA model order

ARMA Models:
Properties,
Identification, and
Estimation

O"s MATHENATICAL AND

S}'ATISI;ICAL SCIENCES

Tentative Model
Identification Using
ACF and PACF



PACF Plot for a ARMA Process ARMA Models:
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Identifying Plausible Stationary ARMA Models

We can use the sample ACF and PACF to help identify
plausible models:

Model | ACF | PACF

MA(q) | cuts off after lag ¢ tails off exponentially
AR(p) | tails off exponentially | cuts off after lag p
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Identifying Plausible Stationary ARMA Models

We can use the sample ACF and PACF to help identify

plausible models:

Model | ACF

| PACF

MA(q)
AR(p)

cuts off after lag ¢
tails off exponentially

tails off exponentially
cuts off after lag p

For ARMA(p, q) we will see a combination of the above

1.0 1
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0.6 |
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ARMA Models:

Estimation of the ARMA Process Parameters Properties,

Identification, and
Estimation

‘ School of
Suppose we choose a ARMA(p, ¢) model for {n,} .‘ 9 ?;ﬂf?%‘;é‘ll“é‘cﬁ‘é,’té’a

@ Need to estimate the p + ¢ + 1 parameters:

o AR component {1, -, ¢p}
o MA Component {017 Ty Hq} Parameter Estimation

o Var(Z;) = o°

@ One strategy:

o Do some preliminary estimation of the model parameters
(e.g., via Yule-Walker estimates)

e Follow-up with maximum likelihood estimation with
Gaussian assumption



The Yule-Walker Method

Suppose 7. is a causal AR(p) process

- P1Mp—1 — - — ¢p77t7p =7

To estimate the parameters {¢1, -, ¢, }, we use a method of
moments estimation scheme:

o Leth=0,1,---,p. We multiply n,_5, to both sides

NeNe—h = P1Nt-1Mt=h — == = PpNi—pNt-h = LtNi-h

@ Taking expectations:

Emene-n) = G1EMe-1me-n) = = OpEMe—pni-n) = E(Zini-1),

we get| y(h) = ¢1y(h=1) == ¢y 7(h = p) = E(Zim-n) |
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ARMA Models:

The Yule-Walker Equations Properties,

Identification, and
Estimation

@ When h =0, E(Zns—p) = Cov(Zy,mi) = 0 (Why?) " gﬂ;gﬁggf;&;ﬁga
Therefore, we have

(0) - z 617(f) = o

Parameter Estimation

@ When h > 0, Z; is uncorrelated with n;_;, (because the
assumption of causality), thus E(Z;n,_) = 0 and we have

p
’Y(h)—Z(i)]’Y(h—j):O, h:172a“'7p
7=1

@ The Yule-Walker estimates are the solution of these
equations when we replace (k) by 5(h)



ARMA Models:

The Yule-Walker Equations in Matrix Form Properties,

Identification, and
Estimation

S @0 .
Let ¢ = (¢1,,¢,)" be an estimate for ¢ = (¢1,-+,¢,)T and let

i) A1) A1)
Pol AW A0 k-

;Y(p - 1) :Y(p - 2) 'A)/(O) Parameter Estimation

Then the Yule-Walker estimates of ¢ and o2 are

and .
6” =4(0)- "4

where 4 = (3(1),--,4(p))"



Lake Huron Example in R A Properon,

Properties,
Identification, and
S ) Estimation
YW_est <- ar(Ilmiresiduals, aic = F, order.max = 2, method = "yw") P
) @CF  VATHEMATICAL AND
# plot sample and estimated acf/pacf " NCES

par(las = 1, mgp = c(2.2, 1, @), mar = c(3.6, 3.6, 0.6, 0.6), mfrow = c(2, 1))
acf(lm$residuals)

acf_YWest <- ARMAacf(ar = YW_est$ar, lag.max = 23)

points(0:23, acf_YWest, col = "[@H", pch = 16, cex = 0.8)

pacf (lm$residuals)

pacf_YWest <- ARMAacf(ar = YW_estdar, lag.max = 23, pacf = T)

points(1:23, pacf_YWest, col = "[@", pch = 16, cex = 0.8)

Parameter Estimation
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Remarks on the Yule-Walker Method

@ For large sample size, Yule-Walker estimator have
(approximately) the same sampling distribution as
maximum likelihood estimator (MLE), but with small
sample size Yule-Walker estimator can be far less efficient
than the MLE

See Least Squares Estimation in Chapter 7.2 of Cryer and Chan (2008).
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Remarks on the Yule-Walker Method

@ For large sample size, Yule-Walker estimator have
(approximately) the same sampling distribution as
maximum likelihood estimator (MLE), but with small
sample size Yule-Walker estimator can be far less efficient
than the MLE

@ The Yule-Walker method is a poor procedure for MA(q)
and ARMA(p,q) processes with ¢ > 0 (see Cryer Chan
2008, p. 150-151)

See Least Squares Estimation in Chapter 7.2 of Cryer and Chan (2008).
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Remarks on the Yule-Walker Method

@ For large sample size, Yule-Walker estimator have
(approximately) the same sampling distribution as
maximum likelihood estimator (MLE), but with small
sample size Yule-Walker estimator can be far less efficient
than the MLE

@ The Yule-Walker method is a poor procedure for MA(q)
and ARMA(p,q) processes with ¢ > 0 (see Cryer Chan
2008, p. 150-151)

@ We move on the more versatile and popular method for
estimating ARMA(p,q) parameters—maximum likelihood
estimation’

See Least Squares Estimation in Chapter 7.2 of Cryer and Chan (2008).
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Maximum Likelihood Estimation

@ The setup:
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Maximum Likelihood Estimation

@ The setup:

e Model: X = (X1, X2,--, X») has joint probability density

function f(z;w) where w = (w1, wa,

parameters

,wp) is a vector of p

ARMA Models:
Properties,
Identification, and
Estimation

MATHENATICAL AND
" STATISTICAL SCIENCES

Parameter Estimation



Maximum Likelihood Estimation

@ The setup:

e Model: X = (X1, Xa,-,
function f(z;w) where w = (w1, w2, -, w,) is a vector of p

parameters

o Data: © = (z1, 2,

71'71,)

X)) has joint probability density
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Maximum Likelihood Estimation

@ The setup:

e Model: X = (X1, X2,--, X») has joint probability density
function f(z;w) where w = (w1, w2, -, w,) is a vector of p
parameters

o Data: @ = (z1,22, ", Tn)

@ The likelihood function is defined as the the “likelihood” of
the data, x, given the parameters, w

Ln(w) = f(w7w)
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Maximum Likelihood Estimation

@ The setup:

e Model: X = (X1, X2, -,
function f(x;w) where w = (w1, w2, -,

parameters

o Data: @ = (z1,22, ", Tn)

@ The likelihood function is defined as the the “likelihood” of

the data, x, given the parameters, w

@ The maximum likelihood estimate (MLE) is the value of w

Ln(w) = f(x7w)

X)) has joint probability density

wp) is a vector of p

which maximizes the likelihood, L, (w), of the data «:

w = argmax L, (w).
w

It is equivalent (and often easier) to maximize the log

likelihood,

ln(w) =log Ly (w)
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The MLE for an i.i.d. Gaussian Process

Suppose {X;} be a Gaussian i.i.d. process with mean p and
variance o2. We observe a time series « = (z1, -, 2,)".

@ The likelihood function is
Ln(,u702) = f(a:ll“’t’o—z)

St
t=1

Al 222)
=1 | V2mo? 202

- (27) " 2(0?) 2 exp [Mu)]
202

ARMA Models:
Properties,
Identification, and
Estimation

o%% Jiiommen
" ALSEIENCES

Parameter Estimation



The MLE for an i.i.d. Gaussian Process

Suppose {X;} be a Gaussian i.i.d. process with mean p and
variance o2. We observe a time series « = (z1, -, 2,)".

@ The likelihood function is
Ln(ﬂaoz) = f(wll’L?Jz)

- ﬁf(xtm,a)

= i { ! ex [_(xt_ﬂ)z]}
=1 |V 2mo? P 202
- (2m) (0% " exp [Mu)]

202

@ The log-likelihood function is

fn(u’ 02) = ]'Og Ln(:u’v 02)

n Ry
_ _g 10g(27r) _ glOg(Jz) _ M

202
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The MLE for an i.i.d. Gaussian Process

Suppose {X;} be a Gaussian i.i.d. process with mean p and
variance o2. We observe a time series « = (z1, -, 2,)".

@ The likelihood function is
Ln(ﬂaoz) = f(wll’L?Jz)

- ﬁf(xtm,a)

= i { ! ex [_(xt_ﬂ)z]}
=1 |V 2mo? P 202
- (2m) (0% " exp [Mu)]

202

@ The log-likelihood function is

fn(u’ 02) = ]'Og Ln(:u’v 02)

n Ry
_ _g 10g(27r) _ glOg(Jz) _ M

202
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The MLE for an i.i.d. Gaussian Process
Suppose {X;} be a Gaussian i.i.d. process with mean p and
variance 2. We observe a time series = = (x1,--,2,)%.

@ The likelihood function is
Lu(p,0%) = f(z|p,0?)
=1/, 0)
t=1

Mol 2]

= (2m) (%) exp [‘w]
202

@ The log-likelihood function is

gn(ua 02) = ]'Og Ln(:u’v 02)

n n
= ——log(27) - = log(c?) -
5 log(2m) -  log(0?) — ==L
= e = 2K L g2 o T (X X)

Y (@ — p)?
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ARMA Models:

Likelihood for Stationary Gaussian Time Series Models Properties,

Identification, and
Estimation

Suppose {X;} be a mean zero stationary Gaussian time series
with ACVF ~(h). If v(h) depends on p parameters, ‘, m‘,‘:gm;f;a;,':gm
w = (wlv“"wp)

@ The likelihood of the data « = (z1, -+, x,,) given the
parameters w is

1
Ln (UJ) = (27_(_)—7’7,/2 |].-‘|_1/2 exp (— §LETF_1 :B) s Parameter Estimation

where T is the covariance matrix of X = (X1, X,,)T, |T|
is the determinant of the matrix ', and I'"! is the inverse
of the matrix T

@ The log-likelihood is
£,(0) = _n log(2m) - 71 log|T'| - 71 o A

Typically need to solve it numerically



Decomposing Joint Density into Conditional Densities

A joint distribution can be represented as the product of
conditionals and a marginal distribution

@ The simple version for n = 2 is:

f(x1,22) = f(@a|z1) f(21)
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ARMA Models:

Decomposing Joint Density into Conditional Densities Properties,
Identification, and

Estimation
A joint distribution can be represented as the product of P

conditionals and a marginal distribution C' STATISTINL SEENCES

@ The simple version for n = 2 is:

f(x1,22) = f(@a|z1) f(21)

Parameter Estimation

@ Extending for general n we get the following expression for
the likelihood:

Ln(a) = f(:c,@) = f(xl) H f(xt|xt—l7"'axl;0)a
t=2
and the log-likelihood is

£,(8) =1og f(:0) =log(f(x1)) + 3. log f (welrr-y, - 21:6).
t=2



AR(1) Log-likelihood
Let {n1,n2,+,nn } be a realization of a zero-mean stationary
AR(1) Gaussian time series. Let 8 = (¢,0?)

£,(8) = log(f(m)) + z log f (hle-, - 11:6) .

———
en,l

U2
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AR(1) Log-likelihood

Let {77177727"

-, 1} be a realization of a zero-mean stationary

AR(1) Gaussian time series. Let 8 = (¢,0?)

£,(8) =log(f(m))+ élog felne-1,+,m150) .

Note that for t > 2, f(n¢|ni-1,
N(¢77t71,02) = fn,z =

[77t|77t71] ~

(n

2

———

en,l

-1
7)10g27r—

(n-1),

ogo

2_

U2

~m) = f(ne|ne-1), where

Yo (e — ¢me-1)?

202
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AR(1) Log-likelihood

Let {n1,n2,+,nn } be a realization of a zero-mean stationary

AR(1) Gaussian time series. Let 8 = (¢,0?)

£, (0) =log(f(m)) + élogf(ntlnth--wm;@)

———

Note that for t > 2, f(n¢|ni-1,

en,l

~m) = f(ne|ne-1), where

[ene-1] ~ N(¢me-1,0%) = Ly, 2 =

U2

-1 -1 n _ B 2
SO S U SN o/ P C R 0
2 202
0_2
Also, we know [n;] ~N (0, W) =Vl =
—log2r logo® log(1-¢%) (1-¢*)n}
2 2 2 202
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AR(1) Log-likelihood
Let {n1,n2,+,nn } be a realization of a zero-mean stationary
AR(1) Gaussian time series. Let 8 = (¢,0?)

£, (0) =log(f(m)) + élogf(ntlnth--wm;@)

———
en,l

U2
Note that for ¢ > 2, f(n|ne-1,,m1) = f(nelne-1), where
[nelne-1] ~ N(mp-1,0%) = b=
JECES PGS S v I e Y

2 9 087 252

Also, we know 7] ~ N (0, ﬁ) =Vl =

—log 2w log02+10g(1—¢2) (1-¢*)ni
2 2 2 20°

> Yieo(me = ¢ne-1)?

202

=0,(0)=- glogQW— gloga

log(1-6%) (1=t
2 202
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AR(1) Log-likelihood Cont'd A ropertin,
Identification, and
Estimation

o%% Jiiommen
Q@ STSTcAL ievces

log(1-¢") S(¢)
2 202"’

where S(¢) = X0 o (e — dne-1)? + (1 - ¢?)n?

£,(0) = —glog27r— gloga2 +

Parameter Estimation

@ For given value of ¢, £,,(¢,c?) can be maximized
analytically with respect to o

&2=&q§)

n



AR(1) Log-likelihood Cont'd

og(1- %) 5(6)
2 202"’

where S(¢) = Xio(ne — one-1)* + (1 - ¢*)ni

£,(0) = —Elog27r— 5 logo? +

@ For given value of ¢, £,,(¢,c?) can be maximized
analytically with respect to o2

2 S)

n

@ Estimation of ¢ can be simplified by maximizing the
conditional sum-of-squares (37, (7; — ¢1:-1)?)
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arima in R with the Lake Huron Example
arima: ARIMA Modelling of Time Series

Description

Fit an ARIMA model to a univariate time series.

Usage

(oL, oL, oL), period = NA),
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arima in R with the Lake Huron Example A propertice,

: . . . Identification, and
arima: ARIMA Modelling of Time Series Estimation

Description o%% iiewmon mo
Q@@ STTSTcAL Sciekces

Fit an ARIMA model to a univariate time series.

Usage

r = cloL, oL, oL,

L oL), period = NA),

Parameter Estimation

o {r}
(MLE_estl <- arima(lm$residuals, order = c(2, @, @), method = "ML"))

Call:
arima(x = lm$residuals, order = c(2, @, @), method = "ML")

Coefficients:
arl ar? intercept
1.0047 -90.2919 0.0197
s.e. ©0.0977 0.1004 0.2350

sigmaA2 estimated as @.4571: 1log likelihood = -101.25, aic = 210.5
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