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9.2

Agenda

1 Properties of ARMA Models: Stationarity, Causality,
and Invertibility

2 Tentative Model Identification Using ACF and PACF

3 Parameter Estimation
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9.3

ARMA(p, q) Processes

{ηt} is an ARMA(p, q) process if it satisfies

ηt −
p

∑
i=1
ϕiηt−i = Zt +

q

∑
j=1

θjZt−j ,

where {Zt} is a WN(0, σ2) process.

Let ϕ(B) = 1 −∑pi=1 ϕiB
i and θ(B) = 1 +∑qj=1 θjB

j . Then
we can write it as

ϕ(B)ηt = θ(B)Zt

An ARMA(p, q) process {η̃t} with mean µ can be written as

ϕ(B)(η̃t − µ) = θ(B)Zt
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9.4

A Stationary Solution to the ARMA Equation

A zero-mean ARMA process is stationary if it can be written as
a linear process, i.e., ηt = ψ(B)Zt, where ψ(B) = ∑∞j=−∞ ψjB

j

for an absolutely summable sequence {ψj}

This only happens if one can “divide” by ϕ(B), i.e., it is
stationary only if the following makes sense:

(ϕ(B))
−1
ϕ(B)ηt = (ϕ(B))

−1
θ(B)Zt

⇒ ηt =
θ(B)

ϕ(B)
²
=ψ(B)

Zt

Let’s forget about B is the backshift operator and replace it
with z. Now consider whether we can divide θ(z) by ϕ(z)



ARMA Models:
Properties,

Identification, and
Estimation

Properties of ARMA
Models: Stationarity,
Causality, and
Invertibility

Tentative Model
Identification Using
ACF and PACF

Parameter Estimation

9.4

A Stationary Solution to the ARMA Equation

A zero-mean ARMA process is stationary if it can be written as
a linear process, i.e., ηt = ψ(B)Zt, where ψ(B) = ∑∞j=−∞ ψjB

j

for an absolutely summable sequence {ψj}

This only happens if one can “divide” by ϕ(B), i.e., it is
stationary only if the following makes sense:

(ϕ(B))
−1
ϕ(B)ηt = (ϕ(B))

−1
θ(B)Zt

⇒ ηt =
θ(B)

ϕ(B)
²
=ψ(B)

Zt

Let’s forget about B is the backshift operator and replace it
with z. Now consider whether we can divide θ(z) by ϕ(z)



ARMA Models:
Properties,

Identification, and
Estimation

Properties of ARMA
Models: Stationarity,
Causality, and
Invertibility

Tentative Model
Identification Using
ACF and PACF

Parameter Estimation

9.5

Roots of the AR Characteristic Polynomial and Stationarity

A root of the polynomial f(z) = ∑pj=0 ajz
j is a value ξ such

that f(ξ) = 0⇒ it can be real-valued R or complex-valued
C

For example, a root can take the form ξ = a + b i for real
number a and b. The modulus of a complex number ∣ξ∣ is
defined by

∣ξ∣ =
√
a2 + b2

For any ARMA(p,q) process, a stationary and unique
solution exists if and only if

ϕ(z) = 1 − ϕ1z −⋯ − ϕpz
p
≠ 0,

for all ∣z∣ = 1⇒ None of the roots of the AR characteristic
equation have a modulus of exactly 1

Note: Stationarity of the ARMA process has nothing to
do with the MA polynomial!
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9.6

AR(4) Example

Consider the following AR(4) process

ηt = 2.7607ηt−1 − 3.8106ηt−2 + 2.6535ηt−3 − 0.9238ηt−4 +Zt,

the AR characteristic polynomial is

ϕ(z) = 1 − 2.7607z + 3.8106z2 − 2.6535z3 + 0.9238z4

Hard to find the roots of ϕ(z) –we use the polyroot
function in R:

Use Mod in R to calculate the modulus of the roots

Conclusion:
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9.7

Causal ARMA Processes

An ARMA process is causal if there exists constants {ψj} with
∑
∞
j=0 ∣ψj ∣ < 0 and ηt = ∑∞j=0 ψjZt−j , that is, we can write {ηt} as

an MA(∞) process depending only on the current and past
values of {Zt}

Equivalently, an ARMA process is causal if and only if

ϕ(z) = 1 − ϕ1z −⋯ − ϕpz
p
≠ 0,

for all ∣z∣ ≤ 1⇒ None of the roots of the AR characteristic
equation have a modulus less than 1

The previous AR(4) example is causal since each zero, ξ,
of ϕ(⋅) is such that ∣ξ∣ > 1

Note: The causality of the ARMA process depends only
on the AR polynomial!
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9.8

Invertible ARMA Processes
An ARMA process is invertible if there exists constants {πj}
with ∑∞j=0 ∣πj ∣ <∞ and

Zt =
∞
∑
j=0

πjηt−j ,

that is, we can write {Zt} as an AR(∞) process depending only
on the current and past values of {ηt}

A process is invertible if and only if

θ(z) = 1 + θ1z +⋯ + θqz
q
≠ 0,

for all ∣z∣ ≤ 1⇒ None of the roots of the MA characteristic
equation have a modulus less than 1

An ARMA process

ηt − 0.5ηt−1 = Zt + 0.4Zt−1,

with ϕ(z) = 1− 0.5z and θ(z) = 1+ 0.4z has a root of the MA
characteristic polynomial at z = −1

0.4
= −2.5
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9.9

Review of the Autocorrelation Function (ACF)

The autocorrelation function (ACF) measures the correlation of
a stationary time series ηt with its own lagged values

The theoretical ACF for MA processes can be computed
as ρ(h) = ∑

q
j=0 θjθj+h

∑q
j=0 θ

2
j

, and via the Yule-Walker equation for
AR processes

The ACF is useful in identifying the MA(q) order, as it cuts
off after lag q
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9.10

Partial Autocorrelation Functions (PACF)

The partial autocorrelation function (PACF) represents the
partial correlation of a stationary time series {ηt} with its own
lagged values, while regressing out the effects of the time
series at all shorter lags

The PACF at lag h is the autocorrelation between ηt and
ηt+h with the linear dependence between ηt and
ηt+1, . . . , ηt+h−1 removed

PACF plots are a commonly used tool for identifying the
order of an AR model, as the theoretical PACF “shuts off”
past the order of the model (see an example on the next
slide)

One can use the function pacf in R to plot the PACF
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9.11

An Example of PACF Plot
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The theoretical ACF decays exponentially, while the PACF cuts
off at lag 2
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9.12

PACF Plot for a MA Process

ηt = Zt +Zt−1
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The theoretical ACF cuts off at lag 1, while the PACF decays
exponentially
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9.13

Lake Huron Series PACF Plot
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We can use both ACF and PACF plots to identify the po-
tential ARMA model order
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9.14

PACF Plot for a ARMA Process

ηt − 0.5ηt−1 − 0.25ηt−2 = Zt +Zt−1
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Both the theoretical ACF and PACF decay exponentially
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9.15

Identifying Plausible Stationary ARMA Models

We can use the sample ACF and PACF to help identify
plausible models:

Model ACF PACF
MA(q) cuts off after lag q tails off exponentially
AR(p) tails off exponentially cuts off after lag p

For ARMA(p, q) we will see a combination of the above
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9.16

Estimation of the ARMA Process Parameters

Suppose we choose a ARMA(p, q) model for {ηt}

Need to estimate the p + q + 1 parameters:

AR component {ϕ1,⋯, ϕp}

MA component {θ1,⋯, θq}

Var(Zt) = σ
2

One strategy:

Do some preliminary estimation of the model parameters
(e.g., via Yule-Walker estimates)

Follow-up with maximum likelihood estimation with
Gaussian assumption
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9.17

The Yule-Walker Method

Suppose ηt is a causal AR(p) process

ηt − ϕ1ηt−1 −⋯ − ϕpηt−p = Zt

To estimate the parameters {ϕ1,⋯, ϕp}, we use a method of
moments estimation scheme:

Let h = 0,1,⋯, p. We multiply ηt−h to both sides

ηtηt−h − ϕ1ηt−1ηt−h −⋯ − ϕpηt−pηt−h = Ztηt−h

Taking expectations:

E(ηtηt−h) − ϕ1E(ηt−1ηt−h) −⋯ − ϕpE(ηt−pηt−h) = E(Ztηt−h),

we get γ(h) − ϕ1γ(h − 1) −⋯ − ϕpγ(h − p) = E(Ztηt−h)
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9.18

The Yule-Walker Equations

When h = 0, E(Ztηt−h) = Cov(Zt, ηt) = σ2 (Why?)
Therefore, we have

γ(0) −
p

∑
j=1

ϕjγ(j) = σ
2

When h > 0, Zt is uncorrelated with ηt−h (because the
assumption of causality), thus E(Ztηt−h) = 0 and we have

γ(h) −
p

∑
j=1

ϕjγ(h − j) = 0, h = 1,2,⋯, p

The Yule-Walker estimates are the solution of these
equations when we replace γ(h) by γ̂(h)
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9.19

The Yule-Walker Equations in Matrix Form

Let ϕ̂ = (ϕ̂1,⋯, ϕ̂p)T be an estimate for ϕ = (ϕ1,⋯, ϕp)T and let

Γ̂ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

γ̂(0) γ̂(1) ⋯ γ̂(p − 1)
γ̂(1) γ̂(0) ⋯ γ̂(p − 2)
⋮ ⋮ ⋱ ⋮

γ̂(p − 1) γ̂(p − 2) ⋯ γ̂(0)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Then the Yule-Walker estimates of ϕ and σ2 are

ϕ̂ = Γ̂−1γ̂,

and
σ̂2
= γ̂(0) − ϕ̂T γ̂,

where γ̂ = (γ̂(1),⋯, γ̂(p))
T
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9.20

Lake Huron Example in R
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9.21

Remarks on the Yule-Walker Method

For large sample size, Yule-Walker estimator have
(approximately) the same sampling distribution as
maximum likelihood estimator (MLE), but with small
sample size Yule-Walker estimator can be far less efficient
than the MLE

The Yule-Walker method is a poor procedure for MA(q)
and ARMA(p,q) processes with q > 0 (see Cryer Chan
2008, p. 150-151)

We move on the more versatile and popular method for
estimating ARMA(p,q) parameters–maximum likelihood
estimation1

1See Least Squares Estimation in Chapter 7.2 of Cryer and Chan (2008).
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9.22

Maximum Likelihood Estimation

The setup:

Model: X = (X1,X2,⋯,Xn) has joint probability density
function f(x;ω) where ω = (ω1, ω2,⋯, ωp) is a vector of p
parameters

Data: x = (x1, x2,⋯, xn)

The likelihood function is defined as the the “likelihood” of
the data, x, given the parameters, ω

Ln(ω) = f(x;ω)

The maximum likelihood estimate (MLE) is the value of ω
which maximizes the likelihood, Ln(ω), of the data x:

ω̂ = argmax
ω

Ln(ω).

It is equivalent (and often easier) to maximize the log
likelihood,

ℓn(ω) = logLn(ω)
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9.23

The MLE for an i.i.d. Gaussian Process
Suppose {Xt} be a Gaussian i.i.d. process with mean µ and
variance σ2. We observe a time series x = (x1,⋯, xn)

T .

The likelihood function is

Ln(µ,σ
2
) = f(x∣µ,σ2

)

=
n

∏
t=1
f(xt∣µ,σ)

=
n

∏
t=1
{

1
√
2πσ2

exp [−
(xt − µ)

2

2σ2
]}

= (2π)−n/2(σ2
)
−n/2 exp [−

∑
n
t=1(xt − µ)

2

2σ2
]

The log-likelihood function is

ℓn(µ,σ
2
) = logLn(µ,σ

2
)

= −
n

2
log(2π) −

n

2
log(σ2

) −
∑
n
t=1(xt − µ)

2

2σ2

⇒ µ̂MLE =
∑n

t=1Xt

n
= X̄, σ̂2

MLE =
∑n

t=1(Xt−X̄)2
n
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Likelihood for Stationary Gaussian Time Series Models

Suppose {Xt} be a mean zero stationary Gaussian time series
with ACVF γ(h). If γ(h) depends on p parameters,
ω = (ω1,⋯, ωp)

The likelihood of the data x = (x1,⋯, xn) given the
parameters ω is

Ln(ω) = (2π)
−n/2
∣Γ∣−1/2 exp(−

1

2
xTΓ−1x) ,

where Γ is the covariance matrix of X = (X1,⋯,Xn)
T , ∣Γ∣

is the determinant of the matrix Γ, and Γ−1 is the inverse
of the matrix Γ

The log-likelihood is

ℓn(θ) = −
n

2
log(2π) −

1

2
log ∣Γ∣ −

1

2
xTΓ−1x

Typically need to solve it numerically
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9.25

Decomposing Joint Density into Conditional Densities

A joint distribution can be represented as the product of
conditionals and a marginal distribution

The simple version for n = 2 is:

f(x1, x2) = f(x2∣x1)f(x1)

Extending for general n we get the following expression for
the likelihood:

Ln(θ) = f(x;θ) = f(x1)
n

∏
t=2
f(xt∣xt−1,⋯, x1;θ),

and the log-likelihood is

ℓn(θ) = log f(x;θ) = log(f(x1)) +
n

∑
t=2

log f(xt∣xt−1,⋯, x1;θ).
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9.26

AR(1) Log-likelihood
Let {η1, η2,⋯, ηn} be a realization of a zero-mean stationary
AR(1) Gaussian time series. Let θ = (ϕ,σ2)

ℓn(θ) = log(f(η1))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ℓn,1

+
n

∑
t=2

log f(ηt∣ηt−1,⋯, η1;θ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ℓn,2

.

Note that for t ≥ 2, f(ηt∣ηt−1,⋯, η1) = f(ηt∣ηt−1), where
[ηt∣ηt−1] ∼ N(ϕηt−1, σ

2)⇒ ℓn,2 =

−
(n − 1)

2
log 2π −

(n − 1)

2
logσ2

−
∑
n
t=2(ηt − ϕηt−1)

2

2σ2

Also, we know [η1] ∼ N (0, σ2

(1−ϕ2))⇒ ℓ1,n =

− log 2π

2
−
logσ2

2
+
log(1 − ϕ2)

2
−
(1 − ϕ2)η21

2σ2

⇒ ℓn(θ) = −
n

2
log 2π −

n

2
logσ2

−
∑
n
t=2(ηt − ϕηt−1)

2

2σ2

+
log(1 − ϕ2)

2
−
(1 − ϕ2)η21

2σ2
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ℓn(θ) = log(f(η1))
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AR(1) Log-likelihood Cont’d

ℓn(θ) = −
n

2
log 2π −

n

2
logσ2

+
log(1 − ϕ2)

2
−
S(ϕ)

2σ2
,

where S(ϕ) = ∑nt=2(ηt − ϕηt−1)
2 + (1 − ϕ2)η21

For given value of ϕ, ℓn(ϕ,σ2) can be maximized
analytically with respect to σ2

σ̂2
=
S(ϕ̂)

n

Estimation of ϕ can be simplified by maximizing the
conditional sum-of-squares (∑nt=2(ηt − ϕηt−1)

2)
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arima in R with the Lake Huron Example
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