UNIVER

Lecture 0 Course Information

MATH 8090 Time Series Analysis

Whitney Huang Clemson University

Class Policies

About the Instructor

- Fifth-year Assistant Professor of Applied Statistics and Data Science
- Born in Laramie, WY, grew up in Taiwan

 Obtained a B.S. in Mechanical Engineering, switched to Statistics in graduate school

• Got a Ph.D. (Statistics) in 2017 at Purdue University.

About the Instructor

- Email: wkhuang@clemson.edu Please include [MATH 8090] in your email subject line
- Office: O-221 Martin Hall
- Office Hours: Tue. 9:15 am 10 am, Wed. 2 pm 3 pm, and Thurs 1:30 pm 2:30 pm, and by appointment

Class Policies

Logistics

- There will some homework assignments:
 - To be uploaded to Canvas by 11:59 pm ET on the due dates
 - Worst grade will be dropped
- There will be one 60-min exam. The (tentative) date is: Oct. 5, Thursday
- There will be a final project. It could be a data analysis, a simulation study, methodological or theoretical research, or a report on a research article of interest to you. Topics for the project must be approved by me no later than Nov. 2 (Thursday).

About the Instructor

Evaluation

Grades will be weighted as follows:

Homework	30%
Exam	20%
Final Project	50%

Final course grades will be assigned using the following grading scheme:

$$\begin{array}{c|c} >= 90.00 & A \\ 88.00 \sim 89.99 & A \\ 85.00 \sim 87.99 & B \\ 80.00 \sim 84.99 & B \\ 78.00 \sim 79.99 & B \\ 75.00 \sim 77.99 & C \\ 70.00 \sim 74.99 & C \\ 68.00 \sim 69.99 & C \\ <= 67.99 & F \end{array}$$

About the Instructor

Computing

We will use software to perform statistical analyses. Specifically, we will be using R/Rstudio **R B** Studio

- a free/open-source programming language for statistical analysis
- available at https://www.r-project.org/ (R); https://rstudio.com/ (Rstudio)
- I strongly encourage you to use R Markdown for homework assignments

About the Instructor

Course Materials at CANVAS

About the Instructor

- Course syllabus / Announcements
- Lecture slides/notes/videos
- R Codes
- Data sets

Course Website

Link: https://whitneyhuang83.github.io/ MATH8090/Schedule.html

MATH 8090 Time Series Analysis, Forecasting and Control

Contact Information

Instructor: Whitney Huang

Email: wkhuang@clemson.edu Office Hours:Tue. 9:15 am - 10 am, Wed. 2 pm - 3 pm, and Thurs 1:30 pm - 2:30 pm, and by appointment (in person or via Zoom) Syllabus:Link

Announcements

Welcome to MATH 8090!

Schedule

Week Date		Topic	Slides	Notes with R Code	Homework Assignments/Labs	Exam/Project
1	Aug. 24	Overview of the course	Course information; Slides 1	Notes 1		
2	Aug. 29 and Aug. 31	Estimating trend and seasonality	Slides 2	Notes 2		
3	Sep. 5 and Sep. 7	Stationary processes	Slides 3	Notes 3		
4	Sep. 12 and Sep. 14	ARMA models Part I	Slides 4	Notes 4		
5	Sep. 19 and Sep. 21	ARMA models Part II	Slides 5	Notes 5		
6	Sep. 26 and Sep. 28	ARMA models III	Slides 6	Notes 6		
7	Oct. 3 and Oct. 5	Nonstationary time series models	Slides 7	Notes 7		Exam: Oct. 5
8	Oct. 10 and Oct. 12	Seasonal time series models	Slides 8	Notes 8		
9	Oct. 19	Regression with time series errors	Slides 9	Notes 9		
10	Oct. 24 and Oct. 26	GARCH Models	Slides 10	Notes 10		
11	Oct. 31 and Nov. 2	Extreme Value Analysis	Slides 11	Notes 11		Final Project Proposal Due: Nov. 2
12	Nov. 7 and Nov. 9	Spectral Analysis of Time Series I	Slides 12	Notes 12		
13	Nov. 14 and Nov. 16	Spectral Analysis of Time Series II	Slides 13	Notes 13		
14	Nov. 21	State-Space Models I	Slides 14	Notes 14		
15	Nov. 28 and Nov. 30	State-Space Models II	Slides 15	Notes 15		
16	Dec. 5 - Dec. 7	Review	Slides 16			
17	Dec. 11-15	Final Project				Final Project Due

About the Instructor

Reference Books

- Introduction to Time Series and Forecasting, 2_{nd} Edition, Peter Brockwell and Richard Davis, 2016 [Link]
- *Time Series Analysis and Its Applications With* R *Examples,* 4_{th} Edition, **Robert Shumway and David Stoffer, 2017** [Link]
- *Time Series Analysis with Applications in R*, 2_{nd} Edition, Jonathan Cryer and Kung-Sik Chan, 2008 [Link]
- *Time Series Analysis: Forecasting and Control*, 5_{th} Edition, George Box, Gwilym Jenkins, Gregory Reinsel, Greta Ljung, 2015 [Link]
- Analysis of Financial Time Series, 3_{rd} Edition, Ruey Tsay, 2010 [Link]
- Climate Time Series Analysis: Classical Statistical and Bootstrap Methods, 2_{nd} Edition, Manfred Mudelsee, 2013 [Link]

About the Instructor

Tentative Schedule

About the Instructor

Week	Dates	Торіс
1	8/24	Overview of the course
2	8/29-31	Estimating trend and seasonality
3	9/5-7	Stationary processes
4	9/12-14	ARMA models I
5	9/19-21	ARMA models II
6	9/26-28	ARMA models III
7	10/3-5	Nonstationary time series models
8	10/10-12	Seasonal time series models
9	10/19	Regression with time series errors
10	10/24-10/26	GARCH models
11	10/31-11/2	Extreme value analysis
12	11/7-9	Spectral analysis of time series I
13	11/14-16	Spectral analysis of time series II
14	11/21	State-space models I
15	11/28-30	State-space models II
16	12/5-7	Review