Lecture 1 An Overview of Time Series Analysis Readings: CC08 Chapter 1; SS17 Chapter 1; BD16 Chapter 1.1 - 1.3

MATH 8090 Time Series Analysis Week 1 An Overview of Time Series Analysis

Time Series Data

Time Series Models

Objectives of Time Series Analysis

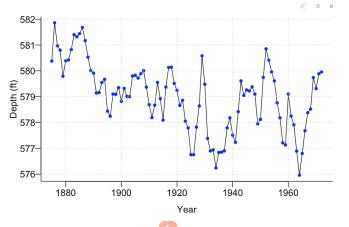
Whitney Huang Clemson University

Agenda

An Overview of Time Series Analysis

Time Series Data

Time Series Models

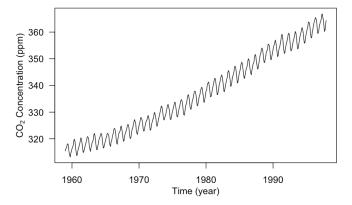


Level of Lake Huron 1875–1972

Annual measurements of the level of Lake Huron in feet.

[Source: Brockwell & Davis, 1991]

An Overview of Time Series Analysis



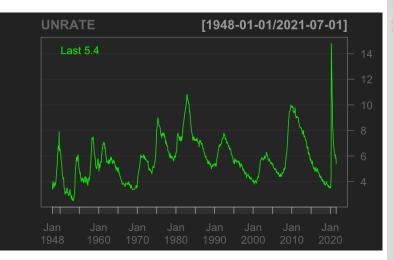
Time Series Data

ime Series Models

Mauna Loa Atmospheric CO₂ Concentration

Monthly atmospheric concentrations of CO₂ at the Mauna Loa Observatory [Source: Keeling & Whorf, Scripps Institution of Oceanography]

An Overview of Time Series Analysis



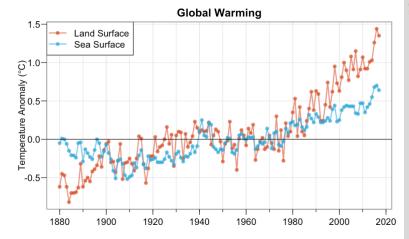
Fime Series Data

Time Series Models

US Unemployment Rate 1948 Jan. - 2021 July

[Source: St. Louis Federal Reserve Bank's FRED system]

An Overview of Time Series Analysis



Fime Series Data

ime Series Models

Global Annual Temperature Anomalies

[Source: NASA GISS Surface Temperature Analysis]

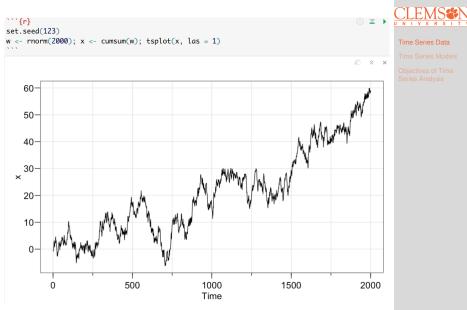
Time Series Data

Time Series Models

Sleep Airflow Signal

200 0 -200 -400 Flow 100 200 300 400 500 600 Time (sec) 200 100 0 -100 -200 300 310 320 330 340

A "normal" patient's 10 Hz sleep airflow signal [Source: H. et al. 2022]


An Overview of Time Series Analysis

ime Series Data

Time Series Models

A Simulated Time Series

An Overview of Time

Series Analysis

Time Series Data

- A time series is a collection of observations {y_t, t ∈ T} taken sequentially in time (t) with the index set T
 - $T = \{0, 1, 2, \dots, T\} \subset \mathbb{Z} \Rightarrow$ discrete-time time series
 - $T = [0, T] \subset \mathbb{R} \Rightarrow$ continuous-time time series
- A discrete-time time series might be intrinsically discrete or might arise from a underlying continuous-time time series via
 - sampling (e.g., instantaneous wind speed)
 - aggregation (e.g., daily accumulated precipitation amount)
 - extrema (e.g., daily maximum temperature)
- We will focus on dealing with discrete-time real-valued (Y_t ∈ ℝ) time series in this course

An Overview of Time Series Analysis

Time Series Data

Time Series Models

Exploratory Time Series Analysis

- Start with a time series plot, i.e., to plot y_t versus t
- Look at the following:
 - Are there abrupt changes?
 - Are there "outliers"?
 - Is there a need to transform the data?
- Examine the trend, seasonal components, and the "noise" term

Fime Series Data

Time Series Models

Features of Times Series

• Trends

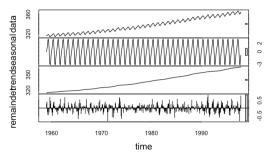
- One can think of trend, μt, as continuous changes, usually in the mean, over longer time scales ⇒ "the essential idea of trend is that it shall be smooth" - [Kendall, 1973]
- Usually the form of the trend is unknown and needs to be estimated. When the trend is removed, we obtain a detrended series
- Seasonal or periodic components
 - A seasonal component s_t constantly repeats itself in time, i.e., s_t = s_{t+kd}
 - We need to estimate the form and/or the period *d* of the seasonal component to deseasonalize the series

• The "noise" process

- The noise process, η_t , is the component that is neither trend nor seasonality
- We will focus on finding plausible (typically stationary) statistical models for this process

An Overview of Time Series Analysis

Time Series Data


Time Series Models

Combining Trend, Seasonality, and Noise Together

There are two commonly used approaches

Additive model:

$$y_t = \mu_t + s_t + \eta_t, \quad t = 1, \cdots, T$$

Time Series Data

Time Series Models

Objectives of Time Series Analysis

• Multiplicative model:

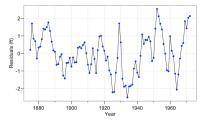
$$y_t = \mu_t s_t \eta_t, \quad t = 1, \cdots, T$$

If all $\{y_t\}$ are positive then we obtain the additive model by taking logarithms:

$$\log y_t = \log \mu_t + \log s_t + \log \eta_t, \quad t = 1, \cdots, T$$

An Overview of Time Series Analysis

Time Series Data

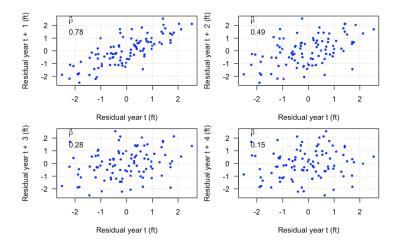

ime Series Models

Objectives of Time Series Analysis

Time Series Models

Lake Huron Time Series

- Time series analysis is the area of statistics which deals with the analysis of dependency between different observations (typically {η_t})
- Some key features of the Lake Huron time series:
 - decreasing trend
 - some "random" fluctuations around the decreasing trend
- We extract the "noise" component by assuming a linear trend



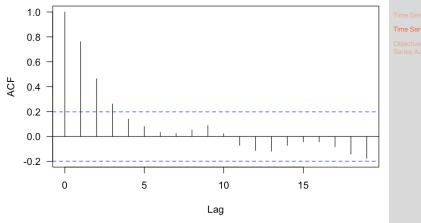
Time Series Data

Fime Series Models

Exploring the Temporal Dependence Structure of $\{\eta_t\}$

 $\{\eta_t\}$ exhibit a temporal dependence structure, meaning that the nearby (in time) values tend to be more alike than those that are far part. To observe this, let's create a few time lag plots

An Overview of Time Series Analysis



Time Series Data

Fime Series Models

Further Exploration of the Temporal Dependence Structure

Let's plot the correlation as a function of the time lag

In a few weeks we will learn how to use this information to suggest an appropriate model

An Overview of Time Series Analysis

Time Series Models

- A time series model is a probabilistic model that describes ways that the series data {y_t} could have been generated
- More specifically, a time series model is usually a probability model for $\{Y_t : t \in T\}$, a collection of random variables indexed in time
- We will try to keep our models for $\{Y_t\}$ as simple as possible by assuming stationarity \Rightarrow some characteristic of the distribution of $\{Y_t\}$ does not depend on the time points, only on the "time lag"
- While most time series are not stationary, one either remove or model the non-stationary parts (e.g., de-trend or de-seasonalization) so that we are only left with a stationary component $\{\eta_t\}$. We typically further assume that the process is second order stationary \Rightarrow $E[\eta_t] = 0, \quad \forall t \in T \text{ and}$ $Cov(\eta_t, \eta_{t'}) = \gamma(t' - t) = Cov(\eta_{t+s}, \eta_{t'+s})$

An Overview of Time Series Analysis

Time Series Data

Time Series Models

An Overview of Time Series Analysis

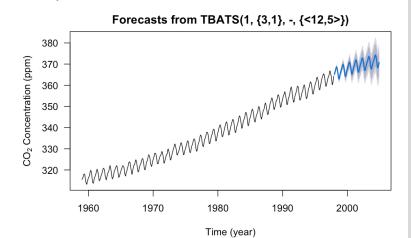
Time Series Data

Time Series Models

Objectives of Time Series Analysis

Some Objectives of Time Series Analysis

- **Modeling**: Find a statistical model that adequately explains the observed time series
- For example, identify a model which can account for the fact that the depths of Lake Huron are correlated with differ years and with a decreasing long-term trend
- The fitted model can be used for further statistical inference, for instant, to answer the question like: Is there evidence of decreasing trend in the Lake Huron depths?



Time Series Data

Fime Series Models

Some Objectives of Time Series Analysis, Cont'd

Forecasting is perhaps the most common objective. One observe a time series of given length and wish to **predict** or **forecast** future values of the time series based on those already observed.

An Overview of Time Series Analysis

Fime Series Data

Time Series Models

Some Objectives of Time Series Analysis, Cont'd

- Adjustment: an example would be seasonal adjustment, where the seasonal component is estimated and then removed to better understand the underlying trend
- **Simulation**: use a time series model (which adequately describes a physical process) as a surrogate to *simulate repeatedly in order to approximate how the physical process behaves*
- **Control**: adjust various input (control) parameters to make the time series fit more closely to a given standard (many examples from statistical quality control)

An Overview of Time Series Analysis

Time Series Data

Fime Series Models