Lecture 10

Univariate Volatility Modeling

Reading: An introduction to analysis of financial data with R (2013) by Ruey Tsay

MATH 8090 Time Series Analysis Week 10

> Whitney Huang Clemson University

Univariate Volatility Modeling

Background

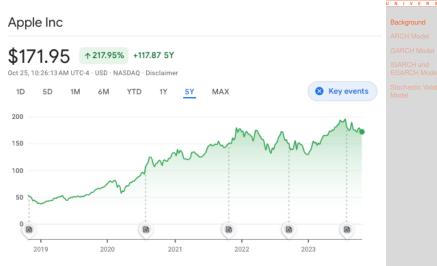
ARCH Mode

GARCH Model

GARCH and EGARCH Models

Agenda

Univariate Volatility Modeling

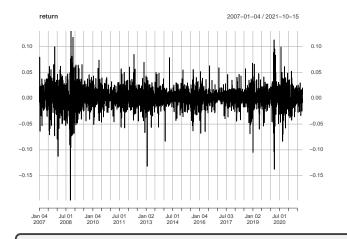

Background

ARCH Mode

GARCH Model

IGARCH and EGARCH Models

Financial Time Series


Source: Google Finance

Univariate Volatility

Modeling

Log Returns of Apple Stock

 $r_t = \log(y_t/y_{t-1})$, where y_t is the price at time t

Background

ARCH Mode

GARCH Model

IGARCH and EGARCH Models

Stochastic Volatility Model

Periods of high uncertainty or rapid price changes tend to cluster together \Rightarrow Volatility Clustering

Modeling Volatility

Volatility is the degree of variation of a trading price series over time, usually measured by the (conditional) standard deviation of (log) returns

Why is volatility important?

- Option pricing, e.g., Black-Scholes formula
- Risk management, e.g., value at risk (VaR)
- Asset allocation, e.g., minimum-variance portfolio
- Interval forecasts

A key challenge: Not directly observable

Background

ARCH Mode

GARCH Model

IGARCH and EGARCH Models

How to Model Volatility?

We will take a econometric approach by modeling the conditional standard deviation (σ_t) of daily or monthly returns

Basic structure

$$r_t = \mu_t + a_t, \quad \mu_t = \mathbb{E}(r_t | F_{t-1}) = \phi_0 + \sum_{i=1}^p \phi_i r_{t-i} + \sum_{j=1}^q \theta_j a_{t-j}$$

Volatility models are concerned with time-evolution of

$$\operatorname{Var}(r_t|F_{t-1}) = \operatorname{Var}(a_t|F_{t-1}) = \sigma_t^2,$$

the conditional variance of a return

Background

ARCH Mode

GARCH Model

IGARCH and EGARCH Models

Literature on Univariate Volatility Modeling

- Autoregressive conditional heteroscedastic (ARCH) model [Engle, 1982]
- Generalized Autoregressive Conditional Heteroskedasticity (GARCH) Model [Bollerslev, 1986]
- Integrated Generalized Autoregressive Conditional heteroskedasticity (IGARCH) model
- Exponential general autoregressive conditional heteroskedastic (EGARCH) model [Nelson, 1991]
- Asymmetric parametric ARCH models [Ding, Granger, and Engle, 1994]
- Stochastic volatility (SV) models [Melino and Turnbull, 1990; Harvey, Ruiz, and Shephard, 1994; Jacqier, Polson. and Rossi, 1994]

Univariate Volatility Modeling

Background

ARCH Mode

GARCH Model

IGARCH and EGARCH Models

Autoregressive Conditional Heteroscedastic (ARCH) Model

An ARCH(m) model:

$$a_t = \sigma_t \epsilon_t, \quad \sigma_t^2 = \alpha_0 + \alpha_1 a_{t-1}^2 + \dots + \alpha_m a_{t-m}^2, \quad \alpha_i \ge 0 \text{ for } 1 \le i \le m$$

where $\{\epsilon_t\}$ is a sequence of i.i.d. r.v. with

•
$$\mathbb{E}(\epsilon_t) = 0$$

•
$$\operatorname{Var}(\epsilon_t) = 1$$

 Distribution: standard normal, standardize Student-t, generalized error distribution, or their skewed counterparts

Background

ARCH Mode

GARCH Model

IGARCH and EGARCH Models

Properties of ARCH Models

Consider an ARCH(1) model

$$a_t = \sigma_t \epsilon_t, \quad \sigma_t^2 = \alpha_0 + \alpha_1 a_{t-1}^2,$$

where $\alpha_0 > 0$ and $\alpha_1 \ge 0$. We have the following properties:

•
$$\mathbb{E}(a_t) = \mathbb{E}\left[\mathbb{E}\left(a_t | F_{t-1}\right)\right] = \mathbb{E}\left[\sigma_t \mathbb{E}(\epsilon_t)\right] = 0$$

•
$$\operatorname{Var}(a_t) = \frac{\alpha_0}{1-\alpha_1}$$
 if $0 < \alpha_1 < 1$

Under normality,

$$m_4 = \mathbb{E}(a_t^2) = \frac{3\alpha_0^2(1+\alpha_1)}{(1-\alpha_1)(1-3\alpha_1^2)}$$

 $\Rightarrow 0 < \alpha_1^2 < \frac{1}{3} \Rightarrow$ this implies heavy tails

Background

ARCH Model

GARCH Model

IGARCH and EGARCH Models

Building an ARCH Model

Modeling the mean effect µ_t and testing for ARCH effects for a_t

 H_0 : no ARCH effects versus H_1 : ARCH effects

Use Ljung-Box test to $\{a_t^2\}$ [McLeod and Li, 1983] or Lagrange multiplier test [Engle, 1982]

- Order determination: use PACF of the squared residuals
- Estimation: conditional MLE
- Model checking: Q-statistics of standardized residuals and squared standardized residuals. Skewness and Kurtosis of standardized residuals

We use R packages fGarch and rugarch for volatility modeling

Background

ARCH Mode

GARCH Model

IGARCH and EGARCH Models

The Advantages And Weaknesses of ARCH Models

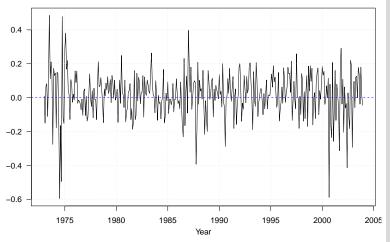
Advantages:

- Simplicity
- Generate volatility clustering
- Heavy tails

Weaknesses:

- Symmetric between positive and negative returns
- Restrictive (e.g., for an ARCH(1) $\alpha_1^2 \in [0, 1/3]$)
- Not sufficiently adaptive in prediction

Background


ARCH Mode

GARCH Model

IGARCH and EGARCH Models

Example: Monthly Log Returns of Intel Stock

Here we use the monthly log returns of Intel stock to illustrate ARCH modeling

Univariate Volatility Modeling

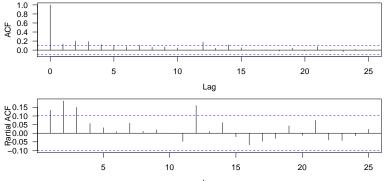
Background

ARCH Mode

GARCH Model

IGARCH and EGARCH Models

Testing ARCH Effect


Here we test and examine the temporal pattern of the squared residuals

> Box.test(y^2, lag = 12, type = 'Ljung')

data: y^2

X-squared = 68.67, df = 12, p-value = 5.676e-10

Background

ARCH Mode

GARCH Model

IGARCH and EGARCH Models

ARCH Model Fitting

Here we fit an ARCH(3) for the volatility:

$$r_t = \mu + a_t, \quad a_t = \sigma_t \epsilon_t, \quad \sigma_t^2 = \alpha_0 + \sum_{i=1}^3 \alpha_i a_{t-i}^2,$$

assuming $\epsilon_t \stackrel{i.i.d.}{\sim} N(0,1)$.

Error Ar	nalysis:							
	Estimate	Std. Error	t value	Pr(> t)				
mu	0.016572	0.006423	2.580	0.00988	**			
omega	0.012043	0.001579	7.627	2.4e-14	***			
alpha1	0.208649	0.129177	1.615	0.10626				
alpha2	0.071837	0.048551	1.480	0.13897				
alpha3	0.049045	0.048847	1.004	0.31536				
Signif.	codes: 0	'***' 0.001	·**' Ø.(01 '*' 0.0	05'.'	0.1	، ،	1

Background

ARCH Model

GARCH Model

IGARCH and EGARCH Models

ARCH Model Fitting

Here we fit an ARCH(3) for the volatility:

$$r_t = \mu + a_t, \quad a_t = \sigma_t \epsilon_t, \quad \sigma_t^2 = \alpha_0 + \sum_{i=1}^3 \alpha_i a_{t-i}^2,$$

assuming $\epsilon_t \stackrel{i.i.d.}{\sim} N(0,1)$.

ъ

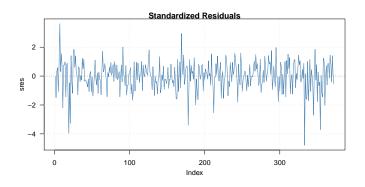
-

Error A	nalysis:			
	Estimate	Std. Error	t value Pr(> t)	
mu	0.016572	0.006423	2.580 0.00988 **	
omega	0.012043	0.001579	7.627 2.4e-14 ***	
alpha1	0.208649	0.129177	1.615 0.10626	
alpha2	0.071837	0.048551	1.480 0.13897	
alpha3	0.049045	0.048847	1.004 0.31536	
Signif.	codes: 0	·***' 0.001	· · ** · 0.01 · * · 0.05 · . · 0.1 · · 1	

Let's fit a simplified ARCH(1) model

Background

ARCH Model


GARCH Model

IGARCH and EGARCH Models

ARCH(1) Model Fitting

Error Analysis:

	Estimate	Std. Error	t value Pr(> t)
mu	0.016570	0.006161	2.689 0.00716 **
omega	0.012490	0.001549	8.061 6.66e-16 ***
alpha1	0.363447	0.131598	2.762 0.00575 **
Signif	codes: 0	·***' 0.001	·** · 0.01 ·* · 0.05 · · · 0.1 · · 1

Background

ARCH Model

GARCH Model

IGARCH and EGARCH Models

ARCH(1) Model Checking

Standardised Residuals Tests:

			Statistic	p-Value
Jarque-Bera Test	R	Chi^2	122.404	0
Shapiro-Wilk Test	R	W	0.9647625	8.273101e-08
Ljung-Box Test	R	Q(10)	13.72604	0.1858587
Ljung-Box Test	R	Q(15)	22.31714	0.09975386
Ljung-Box Test	R	Q(20)	23.88257	0.2475594
Ljung-Box Test	R^2	Q(10)	12.50025	0.25297
Ljung-Box Test	R^2	Q(15)	30.11276	0.01152131
Ljung-Box Test	R^2	Q(20)	31.46404	0.04935483
LM Arch Test	R	TR^2	22.036	0.0371183

Jarque-Berg & Shapiro-Wilk Tests: Normality

Lagrange multiplier (LM) Test: ARCH Effects

Background

ARCH Model

GARCH Model

IGARCH and EGARCH Models

ARCH(1) Model with Student-t Innovations

Error Analysis: Estimate Std. Error t value Pr(>|t|) mu 0.021571 0.006054 3.563 0.000366 *** omega 0.013424 0.001968 6.820 9.09e-12 *** alphal 0.259867 0.119901 2.167 0.030209 * shape 5.985979 1.660030 3.606 0.000311 *** ---Signif. codes: 0 '***' 0.001 '*' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Log Likelihood: 242.9678 normalized: 0.6531391 Description: Mon Oct 18 15:27:27 2021 by user:

CL - L - L - L - L - V - L - -

Standardised Residuals Tests:

			Statistic	p-Value
Jarque-Bera Test	R	Chi^2	130.8931	0
Shapiro-Wilk Test	R	W	0.9637533	5.744995e-08
Ljung-Box Test	R	Q(10)	14.31288	0.1591926
Ljung-Box Test	R	Q(15)	23.34043	0.07717449
Ljung-Box Test	R	Q(20)	24.87286	0.2063387
Ljung-Box Test	R^2	Q(10)	15.35917	0.1195054
Ljung-Box Test	R^2	Q(15)	33.96318	0.003446127
Ljung-Box Test	R^2	Q(20)	35.46828	0.01774746
LM Arch Test	R	TR^2	24.11517	0.01961957

Background

ARCH Model

GARCH Model

IGARCH and EGARCH Models

Generalized AutoregressiveConditional Heteroskedasticity (GARCH) Model

For a log return series r_t , let $a_t = r_t - \mu_t$ be the innovation at time t. Then a_t follows a GARCH(m, s) model if

$$a_t = \sigma_t \epsilon_t, \quad \sigma_t^2 = \alpha_0 + \sum_{i=1}^m \alpha_i a_{t-i}^2 + \sum_{j=1}^s \beta_j \sigma_{t-j}^2,$$

Univariate Volatility

where $\{\epsilon_t\}$ is defined as before, $\alpha_0 > 0$, $\alpha_i \ge 0$, $\beta_i \ge 0$, and $\sum_{i=1}^{\max(m,s)} (\alpha_i + \beta_i) < 1$

Re-parameterization:

Let $\eta_t = a_t^2 - \sigma_t^2$. The GARCH model becomes

$$a_t^2 = \alpha_0 + \sum_{i=1}^{\max(m,s)} (\alpha_i + \beta_i) a_{t-i}^2 + \eta_t - \sum_{j=1}^s \beta_j \eta_{t-j}$$

This is an ARMA form for the squared series a_t^2

GARCH(1, 1) Model

Model:

$$\sigma_t^2 = \alpha_0 + \alpha_1 a_{t-1}^2 + \beta_1 \sigma_{t-1}^2$$

Properties

- Weak stationarity if $0 \le \alpha_1$, $\beta_1 \le 1$, $(\alpha_1 + \beta_1) < 1$
- Volatility clusters

• Heavy tails if
$$1 - 2\alpha_1^2 - (\alpha_1 + \beta_1)^2 > 0$$
, as

$$\frac{\mathbb{E}(a_t^4)}{\left[\mathbb{E}(a_t^2)\right]^2} = \frac{3\left[1 - (\alpha_1 + \beta_1)^2\right]}{1 - (\alpha_1 + \beta_1)^2 - 2\alpha_1^2} > 3$$

1-step ahead forecast

$$\sigma_h^2(1) = \alpha_0 + \alpha_1 a_h^2 + \beta_1 \sigma_h^2$$

Background

ARCH Mode

GARCH Model

IGARCH and EGARCH Models

Multi-Step Ahead Forecasts

For multi-step ahead forecasts, use a_t^2 = $\sigma_t^2\epsilon_t^2$ and rewrite the model as

$$\sigma_{t+1}^2 = \alpha_0 + (\alpha_1 + \beta_1)\sigma_t^2 + \alpha_1\sigma_t^2(\epsilon_t^2 - 1)$$

We have 2-step ahead volatility forecast

$$\sigma_h^2(2) = \alpha_0 + (\alpha_1 + \beta_1)\sigma_h^2(1)$$

In general, we have

$$\begin{aligned} \sigma_h^2(\ell) &= \alpha_0 + (\alpha_1 + \beta_1)\sigma_h^2(\ell - 1), \quad \ell > 1 \\ &= \frac{\alpha_0 [1 - (\alpha_1 + \beta_1)^{\ell - 1}]}{1 - \alpha_1 - \beta_1} + (\alpha_1 + \beta_1)^{\ell - 1}\sigma_h^2(1) \end{aligned}$$

Therefore

$$\sigma_h^2(\ell) \to \frac{\alpha_0}{1 - \alpha_1 - \beta_1}, \quad \text{as } \ell \to \infty$$

Background

ARCH Mode

GARCH Model

IGARCH and EGARCH Models

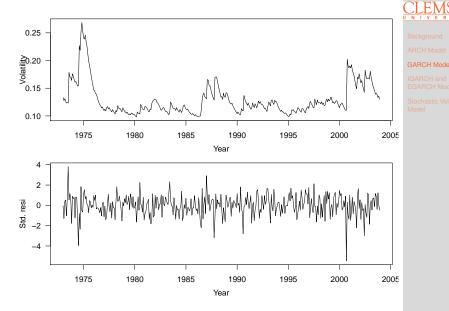
Intel Example Revisited

Error Analysis: Estimate Std. Error t value Pr(>|t|) 0.0163276 0.0062624 2.607 0.00913 ** mu omega 0.0010918 0.0005291 2.063 0.03907 * alpha1 0.0802716 0.0281162 2.855 0.00430 ** beta1 0.8553014 0.0461374 18.538 < 2e-16 *** Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Log Likelihood: 239.5189 normalized: 0.6438681 Description: Mon Oct 18 15:44:32 2021 by user:

e.

Standardised Residuals Tests:

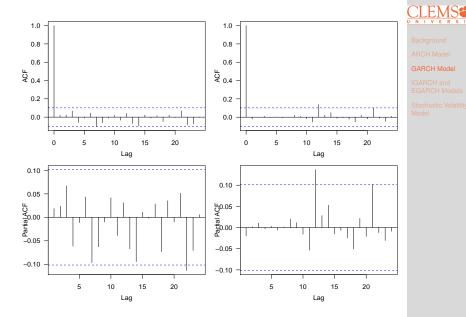
			Statistic	p-Value
Jarque-Bera Test	R	Chi^2	156.5138	0
Shapiro-Wilk Test	R	W	0.9676933	2.471139e-07
Ljung-Box Test	R	Q(10)	9.805485	0.4577215
Ljung-Box Test	R	Q(15)	16.54435	0.346824
Ljung-Box Test	R	Q(20)	17.8005	0.6005484
Ljung-Box Test	R^2	Q(10)	0.5130171	0.9999925
Ljung-Box Test	R^2	Q(15)	10.24557	0.8040151
Ljung-Box Test	R^2	Q(20)	11.77988	0.9234441
LM Arch Test	R	TR^2	9.334459	0.6741288


Background

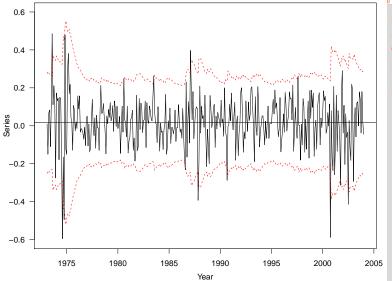
ARCH Mode

GARCH Model

IGARCH and EGARCH Models


Volatility Series and Standardized Residuals

S


GARCH Model Checking: ACF and PACF

Univariate Volatility

Modeling

95% Pointwise Prediction Intervals

Univariate Volatility Modeling

Background

ARCH Mode

GARCH Model

IGARCH and EGARCH Models

The Integrated GARCH Model

If the AR polynomial of the GARCH representation has unit root then we have an IGARCH model

An IGARCH(1, 1) model:

$$a_t = \sigma_t \epsilon_t, \quad \sigma_t^2 = \alpha_0 + \beta_1 \sigma_{t-1}^2 + (1 - \beta_1) a_{t-1}^2$$

ℓ-step ahead forecasts

$$\sigma_h^2(\ell) = \sigma_h(1)^2 + (\ell - 1)\alpha_0, \quad \ell \ge 1$$

 \Rightarrow the effect of $\sigma_h^2(1)$ on future volatilities is persistent, and the volatility forecasts form a straight line with slope α_0

Background

ARCH Mode

GARCH Model

IGARCH and EGARCH Models

The Exponential GARCH Model [Nelson, 1991]

The EGARCH model is able to capture asymmetric effects between positive and negative asset returns by considering the weight innovation

$$g(\epsilon_t) = \theta \epsilon_t + \gamma \left[|\epsilon_t| - \mathbb{E}(|\epsilon_t|) \right],$$

with $\mathbb{E}[g(\epsilon_t)] = 0$

We can see the asymmetry of $g(\epsilon_t)$ by rewriting it as

$$g(\epsilon_t) = \begin{cases} (\theta + \gamma)\epsilon_t - \gamma \mathbb{E}(|\epsilon_t|) & \text{if } \epsilon_t \ge 0, \\ (\theta - \gamma)\epsilon_t - \gamma \mathbb{E}(|\epsilon_t|) & \text{if } \epsilon_t < 0 \end{cases}$$

An EGARCH(m, s) model can be written as

$$a_t = \sigma_t \epsilon_t, \quad \log(\sigma_t^2) = \alpha_0 + \frac{1 + \beta_1 B + \dots + \beta_{s-1} B^{s-1}}{1 - \alpha_1 B - \dots - \alpha_m B^m} g(\epsilon_{t-1})$$

Univariate Volatility Modeling

Background

ARCH Mode

GARCH Model

IGARCH and EGARCH Models

EGARCH(1, 1) Model

Model:

$$a_t = \sigma_t \epsilon_t, \quad (1 - \alpha B) \log(\sigma_t^2) = (1 - \alpha)\alpha_0 + g(\epsilon_{t-1}),$$

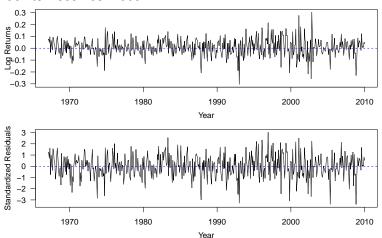
where the ϵ_t are i.i.d. standard normal. In this case, $\mathbb{E}(|\epsilon_t|) = \sqrt{\frac{2}{\pi}}$ and the model for $\log(\sigma_t^2)$ becomes

$$(1-\alpha B)\log(\sigma_t^2) = \begin{cases} (1-\alpha)\alpha_0 - \sqrt{\frac{2}{\pi}}\gamma + (\gamma+\theta)\epsilon_{t-1} & \text{if } \epsilon_{t-1} \ge 0, \\ (1-\alpha)\alpha_0 - \sqrt{\frac{2}{\pi}}\gamma + (\gamma-\theta)(-\epsilon_{t-1}) & \text{if } \epsilon_{t-1} < 0. \end{cases}$$

Finally, we have

$$\sigma_t^2 = \sigma_{t-1}^{2\alpha} \exp\left((1-\alpha)\alpha_0 - \sqrt{\frac{2}{\pi}}\gamma\right) \begin{cases} \exp\left[(\gamma+\theta)\frac{a_{t-1}}{\sigma_{t-1}}\right] & \text{if } a_{t-1} \ge 0, \\ \exp\left[(\gamma-\theta)\frac{|a_{t-1}|}{\sigma_{t-1}}\right] & \text{if } a_{t-1} < 0. \end{cases}$$

Background


ARCH Mode

GARCH Model

IGARCH and EGARCH Models

IBM Stock Example

We consider the monthly log returns of IBM stock from January 1967 to December 2009

Univariate Volatility Modeling

Background

ARCH Mode

GARCH Model

GARCH and EGARCH Models

EGARCH(1, 1) Model Fit

$$r_t = 0.067 + a_t, \quad a_t = \sigma_t \epsilon_t, \quad \epsilon_t \sim \mathcal{N}(0, 1)$$
$$\log(\sigma_t^2) = -0.598 + 0.218(|\epsilon_{t-1}| - 0.423\epsilon_{t-1}) + 0.920\log(\sigma_{t-1}^2)$$

Therefore, we have

$$\sigma_t^2 = \sigma_{t-1}^{2 \times 0.920} \exp(-0.598) \times \begin{cases} \exp(0.125) & \text{if } \epsilon_{t-1} \ge 0, \\ \exp(-0.310) & \text{if } \epsilon_{t-1} < 0. \end{cases}$$

For example, for a standardized shock with magnitude 2 (i.e., two standard deviations), we have

$$\frac{\sigma_t^2(\epsilon_{t-1}=-2)}{\sigma_t^2(\epsilon_{t-1}=2)} = \frac{\exp\left(-0.31 \times (-2)\right)}{\exp\left(0.125 \times 2\right)} = e^{0.37} = 1.448$$

Therefore, the impact of a negative shock of size two standard deviations is about 44.8% higher than that of a positive shock of the same size

Background

ARCH Mode

GARCH Model

IGARCH and EGARCH Models

Stochastic Volatility (SV) Model

A (simple) SV model is

$$a_t = \sigma_t \epsilon_t, \quad (1 - \alpha_1 B - \dots - \alpha_m B^m) \log(\sigma_t^2) = \alpha_0 + \nu_t,$$

where ϵ_t 's are i.i.d. N(0,1), ν_t 's are i.i.d. N(0, σ_{ν}^2), $\{\epsilon_t\}$ and $\{\nu_t\}$ are independent

Long-memory SV Model:

$$a_t = \sigma_t \epsilon_t, \quad \sigma_t = \sigma \exp(u_t/2), \quad (1-B)^d u_t = \eta_t,$$

where $\sigma > 0$, ϵ_t 's are i.i.d. N(0,1), η_t 's are i.i.d. $N(0,\sigma_{\eta}^2)$ and independent of ϵ_t , and 0 < d < 0.5. In LMSV, we have

$$\begin{aligned} \log(a_t^2) &= \log(\sigma^2) + u_t + \log(\epsilon_t^2) \\ &= \left[\log(\sigma^2) + \mathbb{E}(\log(\epsilon_t^2))\right] + u_t + \left[\log(\epsilon_t^2) - \mathbb{E}(\log(\epsilon_t^2))\right] \\ &= \mu + u_t + e_t \end{aligned}$$

Thus, the $log(a_t^2)$ series is a Gaussian long-memory signal plus a non-Gaussian white noise

Background

ARCH Mode

GARCH Model

IGARCH and EGARCH Models