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Financial Time Series

Source: Google Finance
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Log Returns of Apple Stock

rt = log(yt/yt−1), where yt is the price at time t
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Periods of high uncertainty or rapid price changes tend
to cluster together⇒ Volatility Clustering
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Modeling Volatility

Volatility is the degree of variation of a trading price series over
time, usually measured by the (conditional) standard deviation
of (log) returns

Why is volatility important?

Option pricing, e.g., Black-Scholes formula

Risk management, e.g., value at risk (VaR)

Asset allocation, e.g., minimum-variance portfolio

Interval forecasts

A key challenge: Not directly observable
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How to Model Volatility?

We will take a econometric approach by modeling the
conditional standard deviation (σt) of daily or monthly returns

Basic structure

rt = µt + at, µt = E(rt∣Ft−1) = φ0 +
p

∑
i=1
φirt−i +

q

∑
j=1

θjat−j

Volatility models are concerned with time-evolution of

Var(rt∣Ft−1) = Var(at∣Ft−1) = σ2
t ,

the conditional variance of a return
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Literature on Univariate Volatility Modeling

Autoregressive conditional heteroscedastic (ARCH) model
[Engle, 1982]

Generalized Autoregressive Conditional
Heteroskedasticity (GARCH) Model [Bollerslev, 1986]

Integrated Generalized Autoregressive Conditional
heteroskedasticity (IGARCH) model

Exponential general autoregressive conditional
heteroskedastic (EGARCH) model [Nelson, 1991]

Asymmetric parametric ARCH models [Ding, Granger, and
Engle, 1994]

Stochastic volatility (SV) models [Melino and Turnbull,
1990; Harvey, Ruiz, and Shephard, 1994; Jacqier, Polson.
and Rossi, 1994]



Univariate Volatility
Modeling

Background

ARCH Model

GARCH Model

IGARCH and
EGARCH Models

Stochastic Volatility
Model

10.8

Autoregressive Conditional Heteroscedastic (ARCH) Model

An ARCH(m) model:

at = σtεt, σ2
t = α0 + α1a

2
t−1 +⋯ + αma2t−m, αi ≥ 0 for 1 ≤ i ≤m

where {εt} is a sequence of i.i.d. r.v. with

E(εt) = 0

Var(εt) = 1

Distribution: standard normal, standardize Student-t,
generalized error distribution, or their skewed counterparts
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Properties of ARCH Models

Consider an ARCH(1) model

at = σtεt, σ2
t = α0 + α1a

2
t−1,

where α0 > 0 and α1 ≥ 0. We have the following properties:

E(at) = E [E (at∣Ft−1)] = E [σtE(εt)] = 0

Var(at) = α0

1−α1
if 0 < α1 < 1

Under normality,

m4 = E(a2t ) =
3α2

0(1 + α1)
(1 − α1)(1 − 3α2

1)

⇒ 0 < α2
1 < 1

3
⇒ this implies heavy tails
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Building an ARCH Model

1 Modeling the mean effect µt and testing for ARCH effects
for at

H0 ∶ no ARCH effects versus H1 ∶ ARCH effects

Use Ljung-Box test to {a2t} [McLeod and Li, 1983] or
Lagrange multiplier test [Engle, 1982]

2 Order determination: use PACF of the squared residuals

3 Estimation: conditional MLE

4 Model checking: Q-statistics of standardized residuals and
squared standardized residuals. Skewness and Kurtosis
of standardized residuals

We use R packages fGarch and rugarch for volatility
modeling
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The Advantages And Weaknesses of ARCH Models

Advantages:

Simplicity

Generate volatility clustering

Heavy tails

Weaknesses:

Symmetric between positive and negative returns

Restrictive (e.g., for an ARCH(1) α2
1 ∈ [0,1/3])

Not sufficiently adaptive in prediction
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Example: Monthly Log Returns of Intel Stock

Here we use the monthly log returns of Intel stock to illustrate
ARCH modeling

Year
1975 1980 1985 1990 1995 2000 2005
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Testing ARCH Effect

Here we test and examine the temporal pattern of the squared
residuals

0 5 10 15 20 25

0.0
0.2
0.4
0.6
0.8
1.0

Lag

A
C

F

5 10 15 20 25

−0.10
−0.05

0.00
0.05
0.10
0.15

Lag

P
ar

tia
l A

C
F

Series  y^2



Univariate Volatility
Modeling

Background

ARCH Model

GARCH Model

IGARCH and
EGARCH Models

Stochastic Volatility
Model

10.14

ARCH Model Fitting

Here we fit an ARCH(3) for the volatility:

rt = µ + at, at = σtεt, σ2
t = α0 +

3

∑
i=1
αia

2
t−i,

assuming εt
i.i.d.∼ N(0,1).

Let’s fit a simplified ARCH(1) model
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ARCH(1) Model Fitting
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ARCH(1) Model Checking

Jarque-Berg & Shapiro-Wilk Tests: Normality

Lagrange multiplier (LM) Test: ARCH Effects
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ARCH(1) Model with Student-t Innovations
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Generalized AutoregressiveConditional Heteroskedasticity
(GARCH) Model

For a log return series rt, let at = rt − µt be the innovation at
time t. Then at follows a GARCH(m, s) model if

at = σtεt, σ2
t = α0 +

m

∑
i=1
αia

2
t−i +

s

∑
j=1

βjσ
2
t−j ,

where {εt} is defined as before, α0 > 0, αi ≥ 0, βj ≥ 0, and
∑max(m,s)
i=1 (αi + βi) < 1

Re-parameterization:
Let ηt = a2t − σ2

t . The GARCH model becomes

a2t = α0 +
max(m,s)
∑
i=1

(αi + βi)a2t−i + ηt −
s

∑
j=1

βjηt−j

This is an ARMA form for the squared series a2t
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GARCH(1, 1) Model

Model:
σ2
t = α0 + α1a

2
t−1 + β1σ2

t−1,

Properties

Weak stationarity if 0 ≤ α1, β1 ≤ 1, (α1 + β1) < 1

Volatility clusters

Heavy tails if 1 − 2α2
1 − (α1 + β1)2 > 0, as

E(a4t )
[E(a2t )]

2
=

3 [1 − (α1 + β1)2]
1 − (α1 + β1)2 − 2α2

1

> 3

1-step ahead forecast

σ2
h(1) = α0 + α1a

2
h + β1σ2

h
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Multi-Step Ahead Forecasts

For multi-step ahead forecasts, use a2t = σ2
t ε

2
t and rewrite the

model as

σ2
t+1 = α0 + (α1 + β1)σ2

t + α1σ
2
t (ε2t − 1)

We have 2-step ahead volatility forecast

σ2
h(2) = α0 + (α1 + β1)σ2

h(1)

In general, we have

σ2
h(`) = α0 + (α1 + β1)σ2

h(` − 1), ` > 1

= α0[1 − (α1 + β1)`−1]
1 − α1 − β1

+ (α1 + β1)`−1σ2
h(1)

Therefore
σ2
h(`)→

α0

1 − α1 − β1
, as `→∞
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Intel Example Revisited
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Volatility Series and Standardized Residuals
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GARCH Model Checking: ACF and PACF
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95% Pointwise Prediction Intervals
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The Integrated GARCH Model

If the AR polynomial of the GARCH representation has unit
root then we have an IGARCH model

An IGARCH(1, 1) model:

at = σtεt, σ2
t = α0 + β1σ2

t−1 + (1 − β1)a2t−1

`-step ahead forecasts

σ2
h(`) = σh(1)2 + (` − 1)α0, ` ≥ 1

⇒ the effect of σ2
h(1) on future volatilities is persistent, and the

volatility forecasts form a straight line with slope α0
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The Exponential GARCH Model [Nelson, 1991]

The EGARCH model is able to capture asymmetric effects
between positive and negative asset returns by considering the
weight innovation

g(εt) = θεt + γ [∣εt∣ − E(∣εt∣)] ,

with E[g(εt)] = 0

We can see the asymmetry of g(εt) by rewriting it as

g(εt) =
⎧⎪⎪⎨⎪⎪⎩

(θ + γ)εt − γE(∣εt∣) if εt ≥ 0,

(θ − γ)εt − γE(∣εt∣) if εt < 0

An EGARCH(m, s) model can be written as

at = σtεt, log(σ2
t ) = α0 +

1 + β1B +⋯ + βs−1Bs−1
1 − α1B −⋯ − αmBm

g(εt−1)
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EGARCH(1, 1) Model

Model:

at = σtεt, (1 − αB) log(σ2
t ) = (1 − α)α0 + g(εt−1),

where the εt are i.i.d. standard normal. In this case,
E(∣εt∣) =

√
2
π

and the model for log(σ2
t ) becomes

(1−αB) log(σ2
t ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(1 − α)α0 −
√

2
π
γ + (γ + θ)εt−1 if εt−1 ≥ 0,

(1 − α)α0 −
√

2
π
γ + (γ − θ)(−εt−1) if εt−1 < 0

Finally, we have

σ2
t = σ2α

t−1 exp
⎛
⎝
(1 − α)α0 −

√
2

π
γ
⎞
⎠

⎧⎪⎪⎨⎪⎪⎩

exp [(γ + θ) at−1
σt−1

] if at−1 ≥ 0,

exp [(γ − θ) ∣at−1∣
σt−1

] if at−1 < 0.
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IBM Stock Example

We consider the monthly log returns of IBM stock from January
1967 to December 2009
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EGARCH(1, 1) Model Fit

rt = 0.067 + at, at = σtεt, εt ∼ N(0,1)
log(σ2

t ) = −0.598 + 0.218(∣εt−1∣ − 0.423εt−1) + 0.920 log(σ2
t−1)

Therefore, we have

σ2
t = σ2×0.920

t−1 exp(−0.598) ×
⎧⎪⎪⎨⎪⎪⎩

exp(0.125) if εt−1 ≥ 0,

exp(−0.310) if εt−1 < 0.

For example, for a standardized shock with magnitude 2 (i.e.,
two standard deviations), we have

σ2
t (εt−1 = −2)
σ2
t (εt−1 = 2) = exp (−0.31 × (−2))

exp (0.125 × 2) = e0.37 = 1.448

Therefore, the impact of a negative shock of size two standard
deviations is about 44.8% higher than that of a positive shock
of the same size
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Stochastic Volatility (SV) Model

A (simple) SV model is

at = σtεt, (1 − α1B −⋯ − αmBm) log(σ2
t ) = α0 + νt,

where εt’s are i.i.d. N(0,1), νt’s are i.i.d. N(0, σ2
ν), {εt} and

{νt} are independent

Long-memory SV Model:

at = σtεt, σt = σ exp(ut/2), (1 −B)dut = ηt,

where σ > 0, εt’s are i.i.d. N(0,1), ηt’s are i.i.d. N(0, σ2
η) and

independent of εt, and 0 < d < 0.5.
In LMSV, we have

log(a2t ) = log(σ2) + ut + log(ε2t )
= [log(σ2) + E(log(ε2t ))] + ut + [log(ε2t ) − E(log(ε2t ))]
= µ + ut + et

Thus, the log(a2t ) series is a Gaussian long-memory signal
plus a non-Gaussian white noise
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