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Extreme Value Analysis
Readings: An Introduction to Statistical Modeling of Extreme
Values, Stuart Coles, 2001
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Agenda

1 Motivation

2 Extremal Types Theorem & Block Maxima Method

3 Peaks–Over–Threshold (POT) Method
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Outline

1 Motivation

2 Extremal Types Theorem & Block Maxima Method

3 Peaks–Over–Threshold (POT) Method



Extreme Value
Analysis

Motivation

EVT

Peaks–Over–
Threshold (POT)
Method

11.4

Extreme Rainfall During Hurricane Harvey

The highest total rainfall was 60.58 inches near
Nederland, TX.

Annual average rainfall for Nederland, TX: 59 inches
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11.5

Environmental Extremes: Heatwaves, Storm Surges, etc.

Heat wave: The 2003 European heat wave led to the
hottest summer on record in Europe since 1540 that
resulted in at least 30,000 deaths

Storm Surge: Hurricane Katrina produced the highest
storm surge ever recorded (27.8 feet) on the U.S. coast
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11.6

Why Study Extremes?
Although infrequent, extremes usually have large impact.

Source: National Oceanic and Atmospheric Administration

Goal: to quantify the tail behavior ⇒ often requires
extrapolation.
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11.7

Some Scientific Questions

How to estimate the magnitude of extreme events (e.g.
100-year rainfall)?

How extremes vary in space?
2014 Annual Max Precip (inches)

0.37 0.61 1 1.65 2.72 4.48 7.39 12.18

How extremes change in future climate conditions?
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Outline

1 Motivation

2 Extremal Types Theorem & Block Maxima Method

3 Peaks–Over–Threshold (POT) Method
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11.9

Usual vs Extremes

'Ordinary' Stats

Extremes

Target Theory Distribution
Ordinary Stats bulk distribution CLT Normal
Extreme Stats tail distribution(s) ? ?
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11.10

Probability Framework

Let X1,⋯,Xn
i.i.d.∼ F and define Mn =max{X1,⋯,Xn}

Then the distribution function of Mn is

P(Mn ≤ x) = P(X1 ≤ x,⋯,Xn ≤ x)
= P(X1 ≤ x) ×⋯ × P(Xn ≤ x) = Fn(x)

Remark

Fn(x) n→∞=== { 0 if F (x) < 1
1 if F (x) = 1

⇒ the limiting distribution is degenerate.
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11.11

Asymptotic: Classical Limit Laws

Recall the Central Limit Theorem:

Sn − nµ√
nσ

d→ N(0,1),

where Sn = ∑ni=1Xi

⇒ rescaling is the key to obtain a non-degenerate distribution

Question: Can we get the limiting distribution of

Mn − bn
an

for suitable sequence {an} > 0 and {bn}?
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11.12

CLT in Action

1 Generate 100 (n) random numbers from an Exponential
distribution (population distribution)

2 Compute the sample mean of these 100 random numbers
3 Repeat this process 120 times
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11.13

Extremal Types Theorem (Fisher–Tippett 1928, Gnedenko 1943)

Define Mn =max{X1,⋯,Xn} where X1,⋯,Xn
i.i.d.∼ F . If ∃an > 0

and bn ∈ R such that, as n→∞, if

P(Mn − bn
an

≤ x) d→ G(x)

then G must be the same type of the following form:

G(x;µ,σ, ξ) = exp{ − [1 + ξ(x − µ
σ

)]
−1
ξ

+
}

where x+ =max(x,0) and G(x) is the distribution function of
the generalized extreme value distribution (GEV(µ,σ, ξ)),
where µ and σ are location and scale parameters, and ξ is the
shape parameter

ξ > 0: Fréchet (heavy-tail)

ξ = 0: Gumbel (light-tail)

ξ < 0: reversed Weibull
(short-tail)
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11.14

Example: Exponential Maxima

Let X ∼ Exp(λ = 1). Set an = 1, bn = log(n). We want to show
Mn−bn
an

converges to a GEV distribution, where Mn =maxni=1Xi.

P(Mn − bn
an

≤ x) = P(Mn ≤ anx + bn)

= P(Mn ≤ x + log(n))
= (1 − exp(−x − log(n)))n

= (1 − 1

n
exp(−x))n

n→∞Ð→ exp(− exp(x))

It is the cdf of the standard Gumbel distribution
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11.15

Extremal Types Theorem in Action

1 Generate 100 (n) random numbers from an Exponential
distribution (population distribution)

2 Compute the sample maximum of these 100 random
numbers

3 Repeat this process 120 times
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11.16

Max-Stability and GEV

Definition
A distribution G is said to be max-stable if

Gk(akx + bk) = G(x), k ∈ N

for some constants ak > 0 and bk

Taking powers of a distribution function results only in a
change of location and scale

A distribution is max-stable ⇐⇒ it is a GEV distribution
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11.17

Quantiles and Return Levels

Quantiles of GEV

G(mp) = exp{− [1 + ξ(mp − µ
σ

)]
−1
ξ

+
} = 1 − p

⇒mp = µ −
σ

ξ
[1 − {− log(1 − p)−ξ}] 0 < p < 1

In the extreme value terminology, mp is the return level
associated with the return period 1

p
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11.18

Statistical Practice

Assume n is large enough so that

P(Mn − bn
an

≤ x) ≈ exp (−[1 + ξx]−1/ξ)

⇒ P(Mn ≤ y) ≈ exp(− [1 + ξ (y − bn
an

)
−1/ξ

])

∶= exp(− [1 + ξ (y − µ
σ

)]
−1/ξ

)

Then, we have a three-parameter estimation problem. µ, σ, ξ
can be estimated via maximum likelihood1

1Probability weighted moments/L-moments and Bayesian methods
can also be used to carry out parameter estimation
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11.19

Maximum Likelihood Estimation

Let M1,⋯,Mk
iid∼ GEV, then log-likelihood for (µ,σ, ξ) when

ξ ≠ 0 is

`(µ,σ, ξ) = −k logσ − (1 + 1/ξ)
k

∑
i=1

log [1 + ξ (mi − µ
σ

)]

−
k

∑
i=1

[1 + ξ (mi − µ
σ

)]
−1/ξ

,

provided that 1 + ξ(mi−µ
σ

) > 0, for i = 1,⋯, k.

When ξ = 0→ use the Gumbel limit of the GEV

Maximum likelihood estimate (MLE) is obtained by
(numerically) maximization of log-likelihood shown above
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11.20

Uncertainty Quantification for GEV Estimation

Parameters not very interpretable. Better to provide uncertainty
about a more meaningful quantity (e.g. 100-year return level)

Two methods:

Delta method

+: easy to compute with a closed form expression

-: symmetric confidence interval is not realistic (especially
for long return levels)

Profile likelihood method

+: can allow for asymmetric confidence intervals

-: need to compute numerically
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11.21

Clemson Daily Precipitation [Data Source: USHCN]
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11.22

Block Maxima Method (Gumbel 1958)

1. Determine the block size and extract the block maxima
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11.23

Block Maxima Method (Gumbel 1958)

1. Determine the block size and extract the block maxima
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11.24

Block Maxima Method (Gumbel 1958)

2. Fit the GEV to the maximal and assess the fit
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11.25

Block Maxima Method (Gumbel 1958)
2. Fit the GEV to the maximal and assess the fit
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11.26

Block Maxima Method (Gumbel 1958)

3. Perform inference for return levels, probabilities, etc.

95% CI for 50−yr RL
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11.27

Outline

1 Motivation

2 Extremal Types Theorem & Block Maxima Method

3 Peaks–Over–Threshold (POT) Method
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11.28

Recall the Block Maxima Method
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Question: Can we use data more efficiently?
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11.29

Peaks–over–threshold (POT) method [Davison & Smith 1990]

1. Select a “sufficiently large” threshold u, extract the
exceedances
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11.30

Peaks–over–threshold (POT) method [Davison & Smith 1990]

2. Fit an appropriate model to exceedances
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11.31

GPD for Exceedances

If Mn =maxi=1,⋯,nXi (for a large n) can be apprximated by a
GEV(µ,σ, ξ), then for sufficently large u,

P(Xi > x + u∣Xi > u) =
nP(Xi > x + u)
nP(Xi > u)

→
⎛
⎝
1 + ξ x+u−bn

an

1 + ξ u−bn
an

⎞
⎠

−1
ξ

= (1 + ξx

an + ξ(u − bn)
)
−1
ξ

⇒ Survival function of generalized Pareto distribution
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11.32

Pickands–Balkema–de Haan Theorem (1974, 1975)

If Mn =max1≤i≤n{Xi} ≈ GEV(µ,σ, ξ), then, for a “large” u (i.e.,
u→ xF = sup{x ∶ F (x) < 1}),

P(X > u) ≈ 1

n
[1 + ξ (u − µ

σ
)]

−1
ξ

Fu = P(X − u < y∣X > u) is well approximated by the
generalized Pareto distribution (GPD). That is:

Fu(y)
d→Hσ̃,ξ(y) u→ xF

where

Hσ̃,ξ(y) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 − (1 + ξy/σ̃)−1/ξ ξ ≠ 0;

1 − exp(−y/σ̃) ξ = 0.

and σ̃ = σ + ξ(u − µ)
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11.33

How to Choose the Threshold?

Bias–variance tradeoff:
Threshold too low ⇒ bias because of the model
asymptotics being invalid

Threshold too high ⇒ variance is large due to few data
points
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11.34

Peaks–over–threshold (POT) method [Davison & Smith 1990]
2. Fit an appropriate model to exceedances and assess the fit
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11.35

Peaks–over–threshold (POT) method [Davison & Smith 1990]

3. Perform inference for return levels, probabilities, etc

95% CI for 50−yr RL
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11.36

Temporal Dependence

Question: Is the GEV still the limiting distribution for block
maxima of a stationary (but not independent) sequence {Xi}?

Answer: Yes, as long as mixing conditions hold. (Leadbetter et
al., 1983)

What does this mean for inference?

Block maximum approach: GEV still correct for marginal. Since
block maximum data likely have negligible dependence,
proceed as usual

Threshold exceedance approach: GPD is correct for the
marginal. If extremes occur in clusters, estimation affected as
likelihood assumes independence of threshold exceedances
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11.37

Modeling Non-Stationary Extremes: Seasonality and
Long-Term Trend

Mt ∼ GEV(µ(t), σ(t), ξ(t))

Typically assume fairly simple structure for µ(t) and σ(t),

e.g. µ(t) = µ0 + µ1t,

and ξ(t) be a constant

µ(t) and σ(t) could depend on some
physically-informed factors (e.g. Clausius-Clapeyron
precipitation-temperature scaling)
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11.38

Remarks on Univariate Extremes

To estimate the tail, EVT uses only extreme observations

Shape parameter ξ is extremely important but hard to
estimate

Threshold exceedance approaches allow the user to retain
more data than block-maximum approaches, thereby
reducing the uncertainty with parameter estimates

Temporal dependence in the data is more of an issue in
threshold exceedance models. One can either decluster,
or alternatively, adjust inference
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11.39

Summary & Discussion

Extreme value theory provides a framework to model
extreme values

GEV for fitting block maxima

GPD for fitting threshold exceedances

Return level for communicating risk

Practical Issues: seasonality, temporal dependence,
non-stationarity, ...
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For Further Reading

J. Beirlant, Y Goegebeur, J. Segers, and J Teugels
Statistics of Extremes: Theory and Applications.
Wiley, 2004.

L. de Haan, and A. Ferreira
Extreme Value Theory: An Introduction.
Springer, 2006.

S. I. Resnick
Heavy-Tail Phenomena: Probabilistic and Statistical
Modeling. Springer, 2007.

Dipak Dey and Jun Yan
Extreme Value Modeling and Risk Analysis: Methods and
Applications. CRC Press, 2016.
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