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Time Domain Analysis vs Frequency Domain Analysis

Time domain methods [Box and Jenkins, 1970]:

Regress present on past

Example: Yt = φYt−1 +Zt, ∣φ∣ < 1, {Zt} ∼WN(0, σ2)

Capture dynamics in terms of “velocity”, “acceleration”, etc

Frequency domain methods [Priestley, 1981]:

Regress present on periodic sines and cosines

Example: Yt = α0 +∑p
j=1 [α1j cos(2πωjt) + α2j sin(2πωjt)]

Capture dynamics in terms of resonant frequencies
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Searching Hidden Periodicities

yt = 3 cos(2π( 10

200
)t) + 2 cos(2π( 32

200
t + 0.3))
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Describing Cyclical Behavior

The simplest case is the cosine wave

Yt = A cos(2πωt + φ)
= α1 cos(2πωt) + α2 sin(2πωt),

where

A is amplitude

ω is frequency, in cycles per time unit

φ is phase, determining the start point of the cosine
function

α1 = A cos(φ), α2 = −A sin(φ), A =
√
α2

1 + α2
2, φ = tan−1 −α2

α1
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Graphical Illustration of the Cosine Wave
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A Cosine Wave With Random Phase

If

Yt = A cos(2πωt + φ)
= α1 cos(2πωt) + α2 sin(2πωt),

and φ is random, uniformly distribiuted on [−π,π), then:

E(Yt) = 0

E(Yt+hYt) =
1

2
A2 cos(2πωh)

⇒ Yt is weakly stationary
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A Cosine Wave With Random Phase (Continued)

Also

E(α1) = E(α2) = 0,

E(α2
1) = E(α2

2) =
1

2
A2,

and E(α1α2) = 0.

Alternatively, if the α’s have these properties, then Yt is
stationary with the same mean and autocovariances:

E(Yt) = 0,

E(Yt+hYt) =
1

2
A2 cos(2πωh).
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Representing a Periodic Process as Multiple Sines and
Cosines

More generally, if

Yt =
K

∑
k=1

[αk,1 cos(2πωkt) + αk,2 sin(2πωkt)] ,

where:

The α’s are uncorrelated with zero mean;

Var(αk,1) = Var(αk,2) = σ2
k;

then Yt is stationary with zero mean and autocovariances

γ(h) =
K

∑
k=1

σ2
k cos(2πωkh)

⇒ γ(0) = Var(Yt) =
K

∑
k=1

σ2
k
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Examples of Periodic Time Series

Source: Fig. 4.1. of Shumway and Stoffer, 2017
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Folding Frequency and Aliasing

Let’s consider Y1,t = cos (2π(0.2)t) and Y2,t = cos (2π(1.2)t)

At t = 1, Y1,t = cos(0.4πt),
Y2,t = cos(2.4πt) = cos(2πt + 0.4πt) = cos(0.4πt) = Y1,t

This is true for all integer values of t

⇒ ω = 1.2 is an alias of ω = 0.2.

In general, all frequencies higher than ω = 1
2

have an alias
in 0 ≤ ω ≤ 1

2

ω = 1
2

is the folding frequency (aka Nyquist frequency),
because the shortest period that can be observed is 1

ω
= 2.

Takeaway: It suffices to limit attention to ω ∈ [0, 1
2
]
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Illustration of Aliasing

ω = 0.25 and ω = 0.75 are aliased with one another

Discrete Time t

Yt
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Representing Periodic Functions by Fourier Series

Any time series sample y1, y2,⋯, yn can be written

yt = α0 +
(n−1)/2

∑
j=1

[αj cos(2πjt/n) + βj sin(2πjt/n)] ,

if n is odd; if n is even, an extra term is needed

The (scaled) periodogram is

P (j/n) = α2
j + β2

j

the sample variance at each frequency component

The R function spectrum can calculate and plot the
periodogram
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An Example: Yt = cos (2π(0.1)t)
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The Discrete Fourier Transform (DFT)

Given data y1, y2,⋯, yn, the discrete Fourier transform is

d(ωj) =
1√
n

n

∑
t=1

yte
−2πωjt, j = 0,1,⋯, n − 1.

The frequencies ωj = j/n are the Fourier or fundamental
frequencies

Like any other Fourier transform, it has an inverse
transform:

yt =
1√
n

n−1

∑
j=0

d(ωj)e2πωjt, t = 1,2,⋯, n
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The Periodogram

The periodogram is I(ωj) = ∣d(wj)∣2, j = 0,1,⋯, n − 1

The scaled periodogram we used earlier is

P (ωj) = (4/n)I(ωj)

In terms of sample autocovariances: I(0) = nȳ2, and for
j ≠ 0,

I(ωj) =
n−1

∑
h=−(n−1)

γ̂(h)e−2πiωjh

= γ̂(0) + 2
n−1

∑
h=1

γ̂(h) cos(2πωjh).
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Star Magnitude Example [Example 4.3, Shumway & Stoffer, 2017]
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The Spectral Density

The periodogram shows which frequencies are strong in a
finite sample {y1, y2,⋯, yn}

What about a population model for Yt, such as a stationary
time series?

The spectral density plays the corresponding role
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The Mathematics of the Spectrum

Every weakly stationary time series Yt with autocovariances
γ(h) has a non-decreasing spectrum or spectral distribution
function F (ω) for which

γ(h) = ∫
1
2

− 1
2

e2πiωhdF (ω) = 2∫
1
2

0
cos(2πωh)dF (ω).

If F (ω) is absolutely continuous, it has a spectral density
function f(ω) = F ′(ω), and

γ(h) = ∫
1
2

− 1
2

e2πiωhf(ω)dω = 2∫
1
2

0
cos(2πωh)f(ω)dω

The autocovariance and the spectral distribution function
contain the same information
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The Mathematics of the Spectrum (Cont’d)

Under various conditions on γ(h), such as

∞

∑
h=−∞

∣γ(h)∣ <∞

f(ω) can be written as the sum

f(ω) =
∞

∑
h=−∞

γ(h)e−2πiωjh = γ(0) + 2
∞

∑
h=1

γ(h) cos(2πωjh)

Properties of the spectral density:

f(ω) ≥ 0;

f(−ω) = f(ω);

∫
1
2

− 1
2

f(ω)dω = γ(0) <∞
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Example: White Noise

For white noise {Zt}, we have seen that γ(0) = σ2
Z and γ(h) = 0

for h ≠ 0. Thus,

f(ω) =
∞

∑
h=−∞

γ(h)e−2πiωh

= γ(0) = σ2
Z

That is, the spectral density is constant across all frequencies:
each frequency in the spectrum contributes equally to the
variance.

This is the origin of the name white noise: it is like white
light, which is a uniform mixture of all frequencies in the
visible spectrum
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Examples: MA(1)
An MA(1) process Yt = θZt−1 +Zt is a simple filtering of white
noise. Therefore, we have the (power) transfer function of the
MA filter is:

∣1 + θe−2πiω ∣2 = (1 + θe−2πiω)(1 + θe2πiω)
= 1 + θ2 + θ(e2πiω + e−2πiω)
= 1 + θ2 + 2θ cos(2πω).

Thus, we have: f(ω) = [1 + θ2 + 2θ cos(2πω)]σ2
Z
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Example: AR(1)

For an AR(1) Yt = φYt−1 +Zt, we have

[1 + φ2 − 2φ cos(2πω)] f(ω) = σ2
Z

Thus, we have: f(ω) = σ2
Z

1+φ2−2φ cos(2πω)
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Examples: ARMA(p, q)

ARMA: using results about linear filtering, we shall show
that the spectral density of the ARMA(p, q) process

φ(B)Yt = θ(B)Zt

is

f(ω) = σ2
Z

∣θ(e−2πiω)∣2
∣φ(e−2πiω)∣2

Note that this gives the characteristic polynomials φ(⋅) and
θ(⋅) a concrete meaning: they determine how strongly the
series tends to fluctuate at each frequency
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Estimating Spectral Density Using Periodogram

If n is large

E [I(ωj)] ≈
n−1

∑
h=−(n−1)

γ(h)e−2πiωjh

≈
∞

∑
−∞

γ(h)e−2πωjh = γ(0) + 2
∞

∑
h=1

γ(h) cos(2πωjh)

= f(ωj),.

Heuristically, the spectral density is the approximate
expected value of the periodogram

Conversely, the periodogram can be used as an estimator
of the spectral density

But the periodogram values have only two degrees of

freedom each, which makes it a poor estimate/
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The Periodogram

Recall: the discrete Fourier transform

d(ωj) = n−
1
2

n

∑
t=1

yte
−2πiωjt, j = 0,1,⋯, n − 1,

and the periodogram

I(ωj) = ∣d(ωj)∣2, j = 0,1,⋯, n − 1,

where ωj is one of the Fourier frequencies

ωj =
j

n
.

Periodogram is the squared modulus of the DFT
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Sine and Cosine Transforms

For j = 0,1,⋯, n − 1

d(ωj) = n−
1
2

n

∑
t=1

yte
−2πiωjt

= n− 1
2

n

∑
t=1

yt cos(2πωjt) − i × n−
1
2

n

∑
t=1

yt sin(2πωjt)

= dcos(ωj) − i × dsin(ωj).

dcos(ωj) and dcos(ωj) are the cosine transform and sine
transform, respectively, of y1, y2,⋯, yn

The periodogram is I(ωj) = dcos(ωj)2 + dsin(ωj)2
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Sampling Properties of the Periodogram

For convenience, suppose that n is odd: n = 2m + 1

White noise: orthogonality properties of sines and cosines
mean that
dcos(ω1), dsin(ω1), dcos(ω2), dsin(ω2),⋯, dcos(ωm), dsin(ωm)
have zero mean, variance σ2

Z

2
, and uncorrelated

Gaussian white noise:
dcos(ω1), dsin(ω1), dcos(ω2), dsin(ω2),⋯, dcos(ωm), dsin(ωm)
are i.i.d.N(0, σ

2
Z

2
)

So for Gaussian white noise

I(ωj) ∼
σ2
Z

2
× χ2

2

The periodogram is not a consistent estimator of the spectral
density (why?)
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Sampling Distributions: General Case

General case:

dcos(ω1), dsin(ω1), dcos(ω2), dsin(ω2),⋯, dcos(ωm), dsin(ωm),
have zero mean and are approximately uncorrelated, and

Var [dcos(ωj)] ≈ Var [dsin(ωj)] ≈
1

2
f(ωj),

where f(ωj) is the spectral density function

If Yt is Gaussian,

I(ωj)
1
2
f(ωj)

= dcos(ωj)2 + dsin(ωj)2

1
2
f(ωj)

≈ χ2
2,

and I(ω1), I(ω2),⋯, I(ωm) are approximately independent

The periodogram is not a consistent estimator!
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Nonparametric Spectrum Estimates

Recall:
I(ωj)

1
2
f(ωj)

= dcos(ωj)2 + dsin(ωj)2

1
2
f(ωj)

≈ χ2
2,

and I(ω1), I(ω2),⋯, I(ωm) are approximately independent

Problem: I(ωj) is an approximately unbiased estimator of
f(ωj) but with too few degrees of freedom (df = 2) to be useful.
Specifically, I(ω) ⋅∼ 1

2
f(ω)χ2

2, which implies

E[I(ω)] ≈ f(ω)

and
Var[I(ω)] ≈ f2(ω)

Consequently, Var[I(ω)]
n→∞
≠ 0 and thus the periodogram is

not a consistent estimator of the spectral density
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Smoothing the Periodogram
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Main idea: “average” the values of the periodogram over
“small” intervals of frequencies to reduce the estimation
variability
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Averaged Periodogram [Daniell Spectral Window]

Use the band [ωj−l, ωj+l] containing L = 2l + 1 Fourier
frequencies:

f̄(ωj) =
1

L

l

∑
k=−l

I(ωj+k)

0.0 0.1 0.2 0.3 0.4 0.5

0

2

4

6

8

10

Frequency

S
am

pl
e 

S
pe

ct
ra

l D
en

si
ty



Spectral Analysis of
Time Series I

Background

The Periodogram and
Spectral Density

Spectral Estimation

12.33

Tuning Parameter: l

0.0 0.1 0.2 0.3 0.4 0.5

0

5

10

15

Frequency

S
am

pl
e 

S
pe

ct
ra

l D
en

si
ty

l

0
5
15

A large l can effectively reduce the estimation variability but
can also introduce bias
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Bias and Variance
Let’s assume the true spectral density does not change much
locally, then a Taylor expansion produces

E[f̄(ω)] ≈
l

∑
k=−l

Wl(k)f(ω +
k

n
)

≈
l

∑
k=−l

Wl(k) [f(ω) +
k

n
f
′

(ω) + 1

2
(k
n
)2f

′′

(ω)]

≈ f(ω) + 1

n2

f
′′(ω)
2

l

∑
k=−l

k2Wl(k)

Bias ≈ 1

n2

f
′′(ω)
2

l

∑
k=−l

k2Wl(k)

Variance ≈ f2(ω)
l

∑
k=−l

W 2
l (k)

Example: for Daniell rectangular spectral window, we have
bias = 2

n2(2l+1)
( l3

3
+ l2

2
+ l

6
) and variance 1

2l+1



Spectral Analysis of
Time Series I

Background

The Periodogram and
Spectral Density

Spectral Estimation

12.35

Pointwise Confidence Intervals for f(ω)

The distribution of νf̄(ω)
f(ω)

can be approximated by χ2
df=ν , where

ν = 2

∑lk=−lW 2
l (k)

⇒ 100(1 − α)% CI for f(ω)

νf̄(ω)
χ2
df=ν,1−α2

< f(ω) < νf̄(ω)
χ2
df=ν,α2

Taking logs we obtain an interval for the logged spectrum:

log[f̄(ω)] + log

⎡⎢⎢⎢⎢⎣

ν

χ2
ν,1−α2

⎤⎥⎥⎥⎥⎦
< log[f(ω)] < log[f̄(ω)] + log

⎡⎢⎢⎢⎢⎣

ν

χ2
ν,α2

⎤⎥⎥⎥⎥⎦
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Pointwise Confidence Intervals for f(ω): Log-Scale
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Pointwise Confidence Intervals for f(ω): Original Scale
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Spectral Leakage

Much of the previous discussion has assumed that the
frequencies of interest are the Fourier frequencies, i.e., ωj = j

n
.

What happens if that is not the case?

Example: Yt = 3 cos(2π(0.088)t) + sin(2π( 24
96

)t), t = 1,⋯,96
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Power at non-Fourier frequencies will leak into the nearby
Fourier frequencies
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Tapering

Tapering is one method used to alleviate the issue of spectral
leakage, where power at non-Fourier frequencies leak into the
nearby Fourier frequencies

Main idea: replace the original series by the tapered series,
i.e., ỹt = htyt. Tapers ht’s generally have a shape that
enhances the center of the data relative to the extremities to
reduce the end effects of computing a Fourier transform on a
series of finite length
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Tapering (Cont’d)
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