Lecture 12

Spectral Analysis of Time Series I

Readings: CC08 Chapter 13-14; BD16 Ch 4; SS17 Chapter 4.1-4.4

MATH 8090 Time Series Analysis Week 12 Spectral Analysis of Time Series I

Background

he Periodogram and pectral Density

Spectral Estimation

Whitney Huang Clemson University

Agenda

Spectral Analysis of Time Series I

Background

The Periodogram and Spectral Density

Spectral Estimation

The Periodogram and Spectral Density

Time Domain Analysis vs Frequency Domain Analysis

- Time domain methods [Box and Jenkins, 1970]:
 - Regress present on past

Example: $Y_t = \phi Y_{t-1} + Z_t$, $|\phi| < 1$, $\{Z_t\} \sim WN(0, \sigma^2)$

- Capture dynamics in terms of "velocity", "acceleration", etc
- Frequency domain methods [Priestley, 1981]:
 - Regress present on periodic sines and cosines

Example: $Y_t = \alpha_0 + \sum_{j=1}^p \left[\alpha_{1j} \cos(2\pi\omega_j t) + \alpha_{2j} \sin(2\pi\omega_j t) \right]$

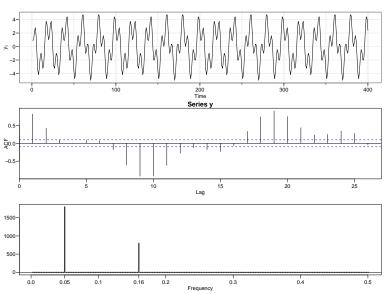
Capture dynamics in terms of resonant frequencies

Background

The Periodogram and Spectral Density

Searching Hidden Periodicities

$$y_t = 3\cos\left(2\pi(\frac{10}{200})t\right) + 2\cos\left(2\pi(\frac{32}{200}t + 0.3)\right)$$



Background

The Periodogram and Spectral Density

Describing Cyclical Behavior

The simplest case is the cosine wave

 $Y_t = A\cos(2\pi\omega t + \phi)$ = $\alpha_1 \cos(2\pi\omega t) + \alpha_2 \sin(2\pi\omega t),$

where

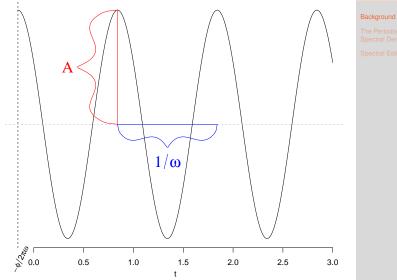
- A is amplitude
- ω is frequency, in cycles per time unit
- *φ* is phase, determining the start point of the cosine function

•
$$\alpha_1 = A\cos(\phi), \ \alpha_2 = -A\sin(\phi), \ A = \sqrt{\alpha_1^2 + \alpha_2^2}, \ \phi = \tan^{-1} \frac{-\alpha_2}{\alpha_1}$$

Background

The Periodogram and Spectral Density

Graphical Illustration of the Cosine Wave



Spectral Analysis of Time Series I

 $y(t) = Acos(2\pi\omega t + \phi)$

A Cosine Wave With Random Phase

lf

 $Y_t = A\cos(2\pi\omega t + \phi)$ = $\alpha_1 \cos(2\pi\omega t) + \alpha_2 \sin(2\pi\omega t),$

and ϕ is random, uniformly distributed on $[-\pi, \pi)$, then:

$$\mathbb{E}(Y_t) = 0$$
$$\mathbb{E}(Y_{t+h}Y_t) = \frac{1}{2}A^2\cos(2\pi\omega h)$$

 \Rightarrow Y_t is weakly stationary

Background

The Periodogram and Spectral Density

A Cosine Wave With Random Phase (Continued)

Also

$$\mathbb{E}(\alpha_1) = \mathbb{E}(\alpha_2) = 0,$$
$$\mathbb{E}(\alpha_1^2) = \mathbb{E}(\alpha_2^2) = \frac{1}{2}A^2,$$
and $\mathbb{E}(\alpha_1\alpha_2) = 0.$

Alternatively, if the α 's have these properties, then Y_t is stationary with the same mean and autocovariances:

$$\mathbb{E}(Y_t) = 0,$$

$$\mathbb{E}(Y_{t+h}Y_t) = \frac{1}{2}A^2\cos(2\pi\omega h).$$

Background

The Periodogram and Spectral Density

Representing a Periodic Process as Multiple Sines and Cosines

More generally, if

$$Y_t = \sum_{k=1}^{K} \left[\alpha_{k,1} \cos(2\pi\omega_k t) + \alpha_{k,2} \sin(2\pi\omega_k t) \right],$$

where:

• The α 's are uncorrelated with zero mean;

•
$$\operatorname{Var}(\alpha_{k,1}) = \operatorname{Var}(\alpha_{k,2}) = \sigma_k^2;$$

then Y_t is stationary with zero mean and autocovariances

$$\gamma(h) = \sum_{k=1}^{K} \sigma_k^2 \cos(2\pi\omega_k h)$$

$$\Rightarrow \gamma(0) = \operatorname{Vor}(Y_t) = \sum_{k=1}^K \sigma_k^2$$

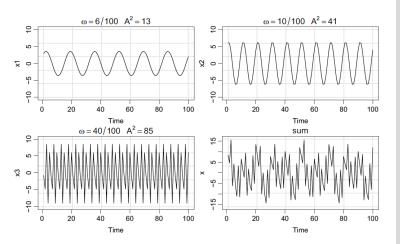
Background

The Periodogram and Spectral Density

Examples of Periodic Time Series

Background

The Periodogram and Spectral Density



Source: Fig. 4.1. of Shumway and Stoffer, 2017

Folding Frequency and Aliasing

Let's consider $Y_{1,t} = \cos(2\pi(0.2)t)$ and $Y_{2,t} = \cos(2\pi(1.2)t)$

• At
$$t = 1$$
, $Y_{1,t} = \cos(0.4\pi t)$,
 $Y_{2,t} = \cos(2.4\pi t) = \cos(2\pi t + 0.4\pi t) = \cos(0.4\pi t) = Y_{1,t}$

• This is true for all integer values of t

 $\Rightarrow \omega = 1.2$ is an alias of $\omega = 0.2$.

In general, all frequencies higher than ω = $\frac{1}{2}$ have an alias in $0 \le \omega \le \frac{1}{2}$

• $\omega = \frac{1}{2}$ is the folding frequency (aka Nyquist frequency), because the shortest period that can be observed is $\frac{1}{\omega} = 2$.

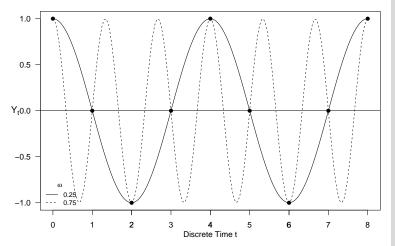
Takeaway: It suffices to limit attention to $\omega \in [0, \frac{1}{2}]$

Background

The Periodogram and Spectral Density

Illustration of Aliasing

ω = 0.25 and ω = 0.75 are aliased with one another



Background

The Periodogram and Spectral Density

Representing Periodic Functions by Fourier Series

Any time series sample y_1, y_2, \dots, y_n can be written

$$y_t = \alpha_0 + \sum_{j=1}^{(n-1)/2} \left[\alpha_j \cos(2\pi j t/n) + \beta_j \sin(2\pi j t/n) \right],$$

if n is odd; if n is even, an extra term is needed

• The (scaled) periodogram is

$$P(j/n) = \alpha_j^2 + \beta_j^2$$

the sample variance at each frequency component

• The R function spectrum can calculate and plot the periodogram

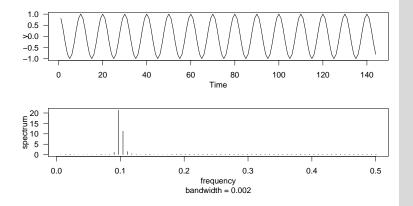
Background

The Periodogram and Spectral Density

An Example: $Y_t = \cos(2\pi(0.1)t)$

Background

The Periodogram and Spectral Density



The Discrete Fourier Transform (DFT)

• Given data y_1, y_2, \dots, y_n , the discrete Fourier transform is

$$d(\omega_j) = \frac{1}{\sqrt{n}} \sum_{t=1}^n y_t e^{-2\pi\omega_j t}, \quad j = 0, 1, \dots, n-1.$$

• Like any other Fourier transform, it has an inverse transform:

$$y_t = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} d(\omega_j) e^{2\pi\omega_j t}, \quad t = 1, 2, \cdots, n$$

Background

The Periodogram and Spectral Density

The Periodogram

• The periodogram is $I(\omega_j) = |d(w_j)|^2$, $j = 0, 1, \dots, n-1$

• The scaled periodogram we used earlier is

 $P(\omega_j) = (4/n)I(\omega_j)$

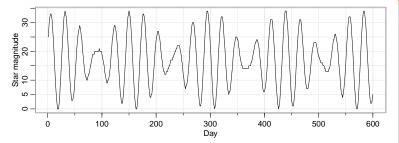
 In terms of sample autocovariances: *I*(0) = nȳ², and for *j* ≠ 0,

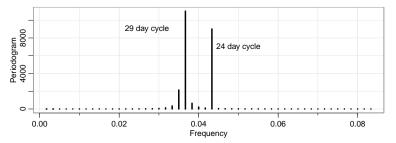
$$\begin{split} I(\omega_j) &= \sum_{h=-(n-1)}^{n-1} \hat{\gamma}(h) e^{-2\pi i \omega_j h} \\ &= \hat{\gamma}(0) + 2 \sum_{h=1}^{n-1} \hat{\gamma}(h) \cos(2\pi \omega_j h). \end{split}$$

Background

The Periodogram and Spectral Density

Star Magnitude Example [Example 4.3, Shumway & Stoffer, 2017]





Spectral Analysis of Time Series I

Background

The Periodogram and Spectral Density

Spectral Analysis of Time Series I

Backgroun

The Periodogram and Spectral Density

- The periodogram shows which frequencies are strong in a finite sample $\{y_1, y_2, \cdots, y_n\}$
- What about a population model for *Y*_t, such as a stationary time series?
- The spectral density plays the corresponding role

The Mathematics of the Spectrum

Every weakly stationary time series Y_t with autocovariances $\gamma(h)$ has a non-decreasing spectrum or spectral distribution function $F(\omega)$ for which

$$\gamma(h) = \int_{-\frac{1}{2}}^{\frac{1}{2}} e^{2\pi i\omega h} dF(\omega) = 2 \int_{0}^{\frac{1}{2}} \cos(2\pi\omega h) dF(\omega).$$

If $F(\omega)$ is *absolutely continuous*, it has a spectral density function $f(\omega) = F'(\omega)$, and

$$\gamma(h) = \int_{-\frac{1}{2}}^{\frac{1}{2}} e^{2\pi i\omega h} f(\omega) \, d\omega = 2 \int_{0}^{\frac{1}{2}} \cos(2\pi\omega h) f(\omega) \, d\omega$$

The autocovariance and the spectral distribution function contain the same information

Background

The Periodogram and Spectral Density

The Mathematics of the Spectrum (Cont'd)

Under various conditions on $\gamma(h)$, such as

$$\sum_{h=-\infty}^{\infty} |\gamma(h)| < \infty$$

 $f(\omega)$ can be written as the sum

$$f(\omega) = \sum_{h=-\infty}^{\infty} \gamma(h) e^{-2\pi i \omega_j h} = \gamma(0) + 2 \sum_{h=1}^{\infty} \gamma(h) \cos(2\pi \omega_j h)$$

Properties of the spectral density:

- $f(\omega) \ge 0;$
- $f(-\omega) = f(\omega);$
- $\int_{-\frac{1}{2}}^{\frac{1}{2}} f(\omega) d\omega = \gamma(0) < \infty$

Backgroun

The Periodogram and Spectral Density

Example: White Noise

For white noise $\{Z_t\}$, we have seen that $\gamma(0) = \sigma_Z^2$ and $\gamma(h) = 0$ for $h \neq 0$. Thus,

$$f(\omega) = \sum_{h=-\infty}^{\infty} \gamma(h) e^{-2\pi i \omega h}$$
$$= \gamma(0) = \sigma_Z^2$$

That is, the spectral density is constant across all frequencies: each frequency in the spectrum contributes equally to the variance.

This is the origin of the name *white noise*: it is like white light, which is a uniform mixture of all frequencies in the visible spectrum

Background

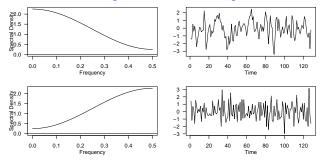
The Periodogram and Spectral Density

Examples: MA(1)

An MA(1) process $Y_t = \theta Z_{t-1} + Z_t$ is a simple filtering of white noise. Therefore, we have the (power) transfer function of the MA filter is:

$$|1 + \theta e^{-2\pi i\omega}|^2 = (1 + \theta e^{-2\pi i\omega})(1 + \theta e^{2\pi i\omega})$$
$$= 1 + \theta^2 + \theta (e^{2\pi i\omega} + e^{-2\pi i\omega})$$
$$= 1 + \theta^2 + 2\theta \cos(2\pi\omega).$$

Thus, we have: $f(\omega) = \left[1 + \theta^2 + 2\theta \cos(2\pi\omega)\right] \sigma_Z^2$



Backgroun

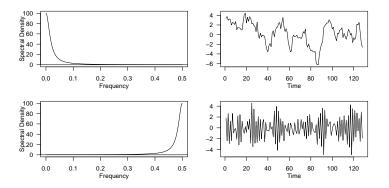
The Periodogram and Spectral Density

Example: AR(1)

For an AR(1) $Y_t = \phi Y_{t-1} + Z_t$, we have

$$\left[1 + \phi^2 - 2\phi\cos(2\pi\omega)\right]f(\omega) = \sigma_Z^2$$

Thus, we have: $f(\omega) = \frac{\sigma_Z^2}{1 + \phi^2 - 2\phi \cos(2\pi\omega)}$



Backgroun

The Periodogram and Spectral Density

Examples: ARMA(p, q)

• ARMA: using results about linear filtering, we shall show that the spectral density of the ARMA(*p*, *q*) process

 $\phi(B)Y_t = \theta(B)Z_t$

is

$$f(\omega) = \sigma_Z^2 \frac{|\theta(e^{-2\pi i\omega})|^2}{|\phi(e^{-2\pi i\omega})|^2}$$

 Note that this gives the characteristic polynomials φ(·) and θ(·) a concrete meaning: they determine how strongly the series tends to fluctuate at each frequency

Background

The Periodogram and Spectral Density

Estimating Spectral Density Using Periodogram

If n is large

$$\mathbb{E}[I(\omega_j)] \approx \sum_{h=-(n-1)}^{n-1} \gamma(h) e^{-2\pi i \omega_j h}$$
$$\approx \sum_{-\infty}^{\infty} \gamma(h) e^{-2\pi \omega_j h} = \gamma(0) + 2 \sum_{h=1}^{\infty} \gamma(h) \cos(2\pi \omega_j h)$$
$$= f(\omega_j) \bigcirc.$$

- Heuristically, the spectral density is the approximate expected value of the periodogram
- Conversely, the periodogram can be used as an estimator of the spectral density
- But the periodogram values have only two degrees of freedom each, which makes it a poor estimate

Background

The Periodogram and Spectral Density

The Periodogram

Recall: the discrete Fourier transform

$$d(\omega_j) = n^{-\frac{1}{2}} \sum_{t=1}^n y_t e^{-2\pi i \omega_j t}, \quad j = 0, 1, \dots, n-1,$$

and the periodogram

$$I(\omega_j) = |d(\omega_j)|^2, \quad j = 0, 1, \dots, n-1,$$

where ω_j is one of the Fourier frequencies

$$\omega_j = \frac{j}{n}.$$

Periodogram is the squared modulus of the DFT

Background

The Periodogram and Spectral Density

Sine and Cosine Transforms

For
$$j = 0, 1, ..., n - 1$$

$$d(\omega_j) = n^{-\frac{1}{2}} \sum_{t=1}^n y_t e^{-2\pi i \omega_j t}$$

$$= n^{-\frac{1}{2}} \sum_{t=1}^n y_t \cos(2\pi \omega_j t) - i \times n^{-\frac{1}{2}} \sum_{t=1}^n y_t \sin(2\pi \omega_j t)$$

$$= d_{\cos}(\omega_j) - i \times d_{\sin}(\omega_j).$$

d_{cos}(ω_j) and d_{cos}(ω_j) are the cosine transform and sine transform, respectively, of y₁, y₂, ..., y_n

• The periodogram is $I(\omega_j) = d_{\cos}(\omega_j)^2 + d_{\sin}(\omega_j)^2$

Background

The Periodogram and Spectral Density

Sampling Properties of the Periodogram

For convenience, suppose that n is odd: n = 2m + 1

 White noise: orthogonality properties of sines and cosines mean that d_{cos}(ω₁), d_{sin}(ω₁), d_{cos}(ω₂), d_{sin}(ω₂), ..., d_{cos}(ω_m), d_{sin}(ω_m)

have zero mean, variance $\frac{\sigma_Z^2}{2}$, and uncorrelated

- Gaussian white noise: $d_{\cos}(\omega_1), d_{\sin}(\omega_1), d_{\cos}(\omega_2), d_{\sin}(\omega_2), \cdots, d_{\cos}(\omega_m), d_{\sin}(\omega_m)$ are i.i.d. N $(0, \frac{\sigma_Z^2}{2})$
- So for Gaussian white noise

$$I(\omega_j) \sim \frac{\sigma_Z^2}{2} \times \chi_2^2$$

The periodogram is not a consistent estimator of the spectral density (why?)

Background

The Periodogram and Spectral Density

Sampling Distributions: General Case

General case:

 $d_{\cos}(\omega_1), d_{\sin}(\omega_1), d_{\cos}(\omega_2), d_{\sin}(\omega_2), \cdots, d_{\cos}(\omega_m), d_{\sin}(\omega_m),$ have zero mean and are approximately uncorrelated, and

$$\operatorname{Var}\left[d_{\cos}(\omega_j)\right] \approx \operatorname{Var}\left[d_{\sin}(\omega_j)\right] \approx \frac{1}{2}f(\omega_j),$$

where $f(\omega_j)$ is the spectral density function

If Y_t is Gaussian,

$$\frac{I(\omega_j)}{\frac{1}{2}f(\omega_j)} = \frac{d_{\cos}(\omega_j)^2 + d_{\sin}(\omega_j)^2}{\frac{1}{2}f(\omega_j)} \approx \chi_2^2,$$

and $I(\omega_1), I(\omega_2), \cdots, I(\omega_m)$ are approximately independent

The periodogram is not a consistent estimator!

Background

The Periodogram and Spectral Density

Nonparametric Spectrum Estimates

Recall:

$$\frac{I(\omega_j)}{\frac{1}{2}f(\omega_j)} = \frac{d_{\cos}(\omega_j)^2 + d_{\sin}(\omega_j)^2}{\frac{1}{2}f(\omega_j)} \approx \chi_2^2,$$

and $I(\omega_1), I(\omega_2), \cdots, I(\omega_m)$ are approximately independent

Problem: $I(\omega_j)$ is an approximately unbiased estimator of $f(\omega_j)$ but with too few degrees of freedom (df = 2) to be useful. Specifically, $I(\omega) \stackrel{\cdot}{\sim} \frac{1}{2} f(\omega) \chi_2^2$, which implies

 $\mathbb{E}[I(\omega)] \approx f(\omega)$

and

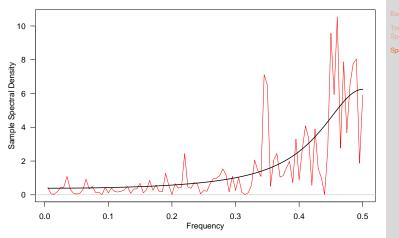
$$\mathbb{Var}[I(\omega)] \approx f^2(\omega)$$

Consequently, $\operatorname{Ver}[I(\omega)] \stackrel{n \to \infty}{\neq} 0$ and thus the periodogram is not a consistent estimator of the spectral density

Background

The Periodogram and Spectral Density

Smoothing the Periodogram

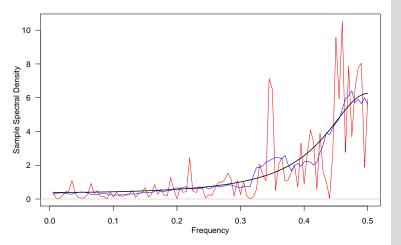


Main idea: "average" the values of the periodogram over "small" intervals of frequencies to reduce the estimation variability Spectral Analysis of Time Series I

Averaged Periodogram [Daniell Spectral Window]

Use the band $[\omega_{j-l}, \omega_{j+l}]$ containing L = 2l + 1 Fourier frequencies:

$$\bar{f}(\omega_j) = \frac{1}{L} \sum_{k=-l}^{l} I(\omega_{j+k})$$



Background

The Periodogram and Spectral Density

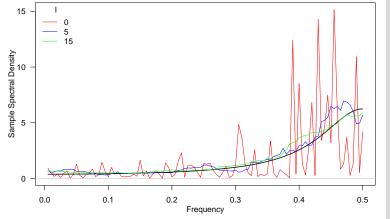
Tuning Parameter: 1

Spectral Analysis of Time Series I

Background

The Periodogram and Spectral Density

Spectral Estimation



A large *l* can effectively reduce the estimation variability but can also introduce bias

Bias and Variance

Let's assume the true spectral density does not change much locally, then a Taylor expansion produces

$$\mathbb{E}[\bar{f}(\omega)] \approx \sum_{k=-l}^{l} W_l(k) f(\omega + \frac{k}{n})$$

$$\approx \sum_{k=-l}^{l} W_l(k) \left[f(\omega) + \frac{k}{n} f'(\omega) + \frac{1}{2} (\frac{k}{n})^2 f''(\omega) \right]$$

$$\approx f(\omega) + \frac{1}{n^2} \frac{f''(\omega)}{2} \sum_{k=-l}^{l} k^2 W_l(k)$$

Bias
$$\approx \frac{1}{n^2} \frac{f''(\omega)}{2} \sum_{k=-l}^{l} k^2 W_l(k)$$

Variance $\approx f^2(\omega) \sum_{k=-l}^{l} W_l^2(k)$

Example: for Daniell rectangular spectral window, we have bias = $\frac{2}{n^2(2l+1)} \left(\frac{l^3}{3} + \frac{l^2}{2} + \frac{l}{6} \right)$ and variance $\frac{1}{2l+1}$

Background

The Periodogram and Spectral Density

Pointwise Confidence Intervals for $f(\omega)$

The distribution of $\frac{\nu \bar{f}(\omega)}{f(\omega)}$ can be approximated by $\chi^2_{df=\nu}$, where

$$\nu = \frac{2}{\sum_{k=-l}^{l} W_l^2(k)}$$

 $\Rightarrow 100(1-\alpha)\%$ Cl for $f(\omega)$

$$\frac{\nu \bar{f}(\omega)}{\chi^2_{df=\nu,1-\frac{\alpha}{2}}} < f(\omega) < \frac{\nu \bar{f}(\omega)}{\chi^2_{df=\nu,\frac{\alpha}{2}}}$$

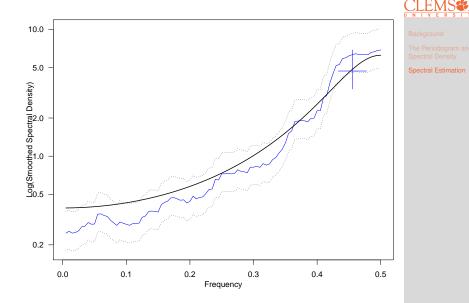
Taking logs we obtain an interval for the logged spectrum:

$$\log[\bar{f}(\omega)] + \log\left[\frac{\nu}{\chi^2_{\nu,1-\frac{\alpha}{2}}}\right] < \log[f(\omega)] < \log[\bar{f}(\omega)] + \log\left[\frac{\nu}{\chi^2_{\nu,\frac{\alpha}{2}}}\right]$$

Background

The Periodogram and Spectral Density

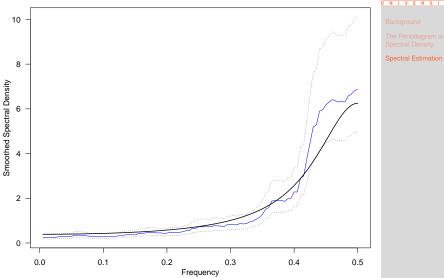
Pointwise Confidence Intervals for $f(\omega)$ **: Log-Scale**



Spectral Analysis of

Time Series I

Pointwise Confidence Intervals for $f(\omega)$: Original Scale

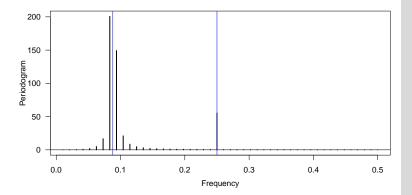


Spectral Analysis of Time Series I

Spectral Leakage

Much of the previous discussion has assumed that the frequencies of interest are the Fourier frequencies, i.e., $\omega_j = \frac{j}{n}$. What happens if that is not the case?

Example: $Y_t = 3\cos(2\pi(0.088)t) + \sin(2\pi(\frac{24}{96})t), \quad t = 1, \dots, 96$



Power at non-Fourier frequencies will leak into the nearby Fourier frequencies

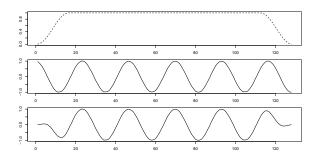
Background

The Periodogram and Spectral Density

Tapering

Tapering is one method used to alleviate the issue of spectral leakage, where power at non-Fourier frequencies leak into the nearby Fourier frequencies

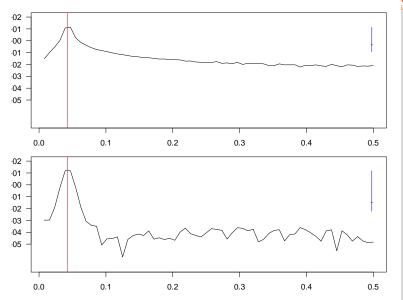
Main idea: replace the original series by the tapered series, i.e., $\tilde{y}_t = h_t y_t$. Tapers h_t 's generally have a shape that enhances the center of the data relative to the extremities to reduce the end effects of computing a Fourier transform on a series of finite length



Background

The Periodogram and Spectral Density

Tapering (Cont'd)



Spectral Analysis of Time Series I

Background

The Periodogram and Spectral Density