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Spectral Analysis of

Review: Nonparametric Spectral Estimation Time Series I

= |d(w;)|?, where CLEMS@N

@ Periodogram: I(w;) =

Review

n ) .
d(wj) = Tl—% Zyte_Zﬂ-Ztha wj = %, ] = 0,1,"',?1— 1
t=1

o el TG, = 1y m = 25 = E[I(w)] % f(w))
Trwp) 2
(unbiased)
o But Var[I(w;)] = f*(w;) (inconsistent)
@ Smooth the periodogram
o Averaged periodogram: f(w;) =+ 7%, I(wjsk)

o Smoothed periodogram: f(w;) = X7, Win (k) I (wj+r)

@ Pointwise ClI for f(w;):

vf(w)) » vf(w))
B0 o) TS
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Spectral ANOVA P ime Soreatl
CLEMS@N

@ For odd n = 2m + 1, the inverse transform can be written B
Review

m

Ye— 4 = % Z [deos(wj) cos(2mw;t) + dsin (w; ) sin(2mw;t)] .

@ Square and sum over t; orthogonality of sines and cosines
implies that

Z(yt =

'MS

Il
=

[ cos (wj)z + dsin(wj)z]

=2) I(wj)

MS

1

J

We have partitioned 1, (y:~%)* into 2x £7", I(w;). This
leads to Spectral ANOVA
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Spectral ANOVA (Cont’d) P ime Soreatl
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Source df SS MS .
w1 2 20 (w1)  I(w1)
w2 2 QI(WQ) I(WQ)

. 2 2 (wn)  I(wn)

Total 2m=n-1 Y(y:-9)°

Toy example:
> x <- c(1, 2, 3, 2, 1) - mean(x)
> cl <- cos(2 * pi * (1:5) * (1 / 5)); sl <- sin(2 * pi * (1:5) * (1 / 5))
> €2 <- cos(2 * pi * (1:5) * (2 / 5)); s2 <- sin(2 * p1 * (L1:5) * (2 / 5))
> omegal <- cbind(cl, sl1); omega? <- cbind(c2, s2)
> anova(lm(x ~ omegal + omega2))

Analysis of Variance Table

Response: x
Df Sum Sq Mean Sq F value Pr(>F)
omegal 2 2.74164 1.37082
omega2 2 0.05836 0.02918
Residuals @ 0.00000
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Example: Southern Oscillation Index (SOI) B
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Southern Oscillation Index (SOI) for a period of 453 months PNV ERS T
ranging over the years 1950-1987

Southern Oscillation
Index Example

1.0
0.5+
'20.0—
—0.5—
—1.0—
T T T T T T T
1950 1960 1970 1980
Time

éz; \l‘lll“L}TXT‘iL]
T P R

Lag
What are the hidden periods of SOI?

13.6



Spectral Analysis of

SOl Example: Raw Periodogram Time Series I

CLEMS@®N

UNI1VERSITY
Series: soi | Raw Periodogram | taper = 0

1.0

Southern Oscillation
Index Example
0.8+

o
2

spectrum

S
i

0.0 MWWM_A,MWWWM

L T T T T T T T T T T T

Frequency (year)

An approximate 95% confidence interval for f(w):

w  Period Power Lower Upper
% 4years 0.0537 0.0146 2.1222
15 lyear 0.9722 0.2636 38.4011
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SOl Example: Averaged Periodogram (Daniell with m = 4) P ime Soreatl
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Series: soi | Smoothed Periodogram | taper = 0

0.12+

Southern Oscillation

Index Example
0.10

0.08-

0.06—

0.04+

0.02—

0.00—

L T T T T T T T T T T T

Frequency (year)

An approximate 95% confidence interval for f(w):

w  Period Power Lower Upper
— 4years 0.0495 0.0279 0.1113
= 1year 0.1191 0.0670 0.2677

13.8



SOl Example: Smoothed Periodogram (modified Daniell ¢(3,3)) | e saieait -

Time Series Il
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Series: soi | Smoothed Periodogram | taper = 0.1

Southern Oscillation
Index Example

0.15+

0.10

0.05-

0.00—

Frequency (year)

An approximate 95% confidence interval for f(w):

w  Period Power Lower Upper
% 4years 0.0502 0.0283 0.1129
75 1year 0.1675 0.0943 0.3767
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SOl Example: Apply Tapering to Alleviate Spectral Leakage Time Series I
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0.100 Southern Oscillation

Index Example

0.050
leakage

— full taper
- no taper

0.020—

0.010

0.005—

0.002—

Frequency (year)

The tapered spectrum does a better job in separating the

yearly cycle w = 1 and the El Nifio cycle w = %
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Seasonally Adjusted SOI [Source: Peter Bloomfield’s ST 730 P e Serioalh
Lecture Notes] CLEMS%:N

UNITVERSITY

Southern Oscillation
Index Example

@ The Southern Oscillation Index data provided by Shumway
and Stoffer is not seasonally adjusted, which explains the
substantial peaks in the periodogram at the annual
frequency

@ So the series is non-stationary, and has neither an
autocovariance function nor a spectral density function

@ A more sensible analysis uses the seasonally adjusted
series. (Bloomfield did this by fitting a seasonal means
model using data from 1876-2010.)
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SOl Example from Bloomfield: Smoothed Periodogram S e
2 1 0.5 0.25 0.167 o
120
Southern Oscillation
Index Example
100
80
60 —
40
20
0

Frequency in cycles per year

Note that the peak at the annual frequency disappear
due to the removal of the annual cycle
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@ Parametric estimation: estimate a model that is specified
by a fixed number of parameters

@ Nonparametric estimation: estimate a model that is
specified by a number of parameters that can grow as the
sample grows

The smoothed periodogram estimates we have considered are
nonparametric: the estimates of the spectral density can be
parameterized by estimated values at w;’s. As n 1, the number
of distinct frequency values increases

The time domain models we considered are parametric. For
example, an ARMA(p,q) process can be completely specified
with p + ¢ + 1 parameters
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Parametric Spectral Estimation S

Time Series Il
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The typical approach is to use the maximum likelihood
parameter estimates (¢1, -, ¢,, %) for the parameters of an
AR(p), and then compute f(w) for this estimated AR model: o
"o Estimation
A o
fw)=—=——""-"
|p(e2m)|?

For large n, )
Var (f(w)) = 7 f*(w)

@ The bias decreases as p 1, the number of parameters
increase, as one can model more complex spectra

@ The variance increase linealy with p
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Spectral Analysis of

ARMA Spectral Estimation Time Series I
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@ Sometimes ARMA models are used instead

Parametric Spectral
Estimation

@ Estimate the parameters of an ARMA(p,q) model and
compute its spectral density:

é(e—Qﬂ'iw ) 2

flw)=0 W

@ However, it is more common to use large AR models,
rather than ARMA models
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Parametric versus Nonparametric Spectral Estimation P ime Soreatl
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@ The main advantage of parametric spectral estimation N ——

over nonparametric is that it often gives better frequency Felimation
resolution of a small number of peaks

@ This is especially important if there is more than one peak
at nearby frequencies

@ The disadvantage of parametric spectral estimation is the
inflexibility due to the use of the restricted class of ARMA
models.

13.16



Spectral Analysis of

Parametric Spectral Estimation: Summary Timecenesil
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Given data y1, y2, -, Yn,

Parametric Spectral
Estimation

@ Estimate the AR parameters (¢1, ¢2, -, ¢, 0) Using
maximum likelihood or Yule-Walker/least squares, choose
a suitable model order p using AIC or BIC

Q Use the estimates (¢1, g2, ¢, 52) to compute the
estimated spectral density:
R 52

fw)= ——
’¢(e—2ﬂ'iw)‘2
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Example: AR(1) with ¢ = 0.8

@ Use AIC to select p, the order of the AR model

Q Use the estimates (¢1, ¢a, -

AR Spectrum

estimated spectral

Series:y | AIC order =1

LA |
0.4 0.5

T
0.1 0.2 0.3
Frequency

B
0.0

-, ¢p,52) to compute the

Series y
0.8
L[]
0.6
L]

0.4 L
[T
(@] [ ]
< L]

0.2+ '. 7777777777777777777777

0.0 ‘TTTT."Oto.

5 10 15 20

Spectral Analysis of
Time Series Il
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Parametric Spectral
Estimation
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Example: ARMA(1, 1) with ¢ =0.8 and § = 0.5

@ Use AIC to select p, the order of the AR model

Q Use the estimates (¢1, ¢a, -

AR Spectrum

estimated spectral

-, ¢p,52) to compute the

Series: y1 | AIC order =3 Series y
0.8
L]
0.6 .
L]
0.4+
w °
2 o
0.2 M.
,,,,,, O oo
L]
0.0 ‘TTT}""OO-
R R
0.0 0.1 0.2 03 04 05 5 10 15 20

Frequency

Spectral Analysis of
Time Series Il

CLEMS@N
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Parametric Spectral
Estimation
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Example: AR(2) with ¢, = 1.5 and ¢5 = -0.95

Series: y2 | AIC order = 2

o
o
o
S
o
o
® h
!
s
LA
£E8 1
£° 1
S e
[ iRl
Qo I
n [
x© i
g I
1
I
I
A
|
8 a0
N i
j
o .

0.0 0.1 0.2 0.3 0.4 0.5
Frequency




Spectral Analysis of

SOI Example Time Series Il
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Series: soi | AIC order = 15

o

Q-

£ o

2

S Parametric Spectral

3o Estimation

7

o

<

o

IS

s 1T T T
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Frequency
Series: soiAdj | AIC order = 14

o

==
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Spectral Analysis of

Lagged Regression Models Time Series I

Consider a lagged regression model of the form
YVi= Y BuXe-n+ Vi,
h=—o00
where X, is an observed input time series. Y; is the observed odss

output time series, and V; is a stationary noise process.

Such a model is useful for

@ |dentifying the (best linear) relationship between two time
series X; and Y;

@ Forecasting one time series (likely Y;) from the other (likely
X;). We may wantto let 5, =0for h <0

13.22



An Example of Lagged Regression Model

Southern Oscillation Index
1.0
0.5
0.0
-0.5-
-1.0— T ; T T T T T
1950 1960 1970 1980
Time
Recruitment
100
80
60
40—
20
0= T T T T T T
1950 1960 1970 1980

Time

@ We may wish to identify how the values of the recruitment
series is related to the SOI

o We may wish to predict future values of recruitment from
the SOI.

Spectral Analysis of
Time Series Il

CLEMS@N

UNITVERSITY

Lagged Regression
Models
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Spectral Analysis of

Lagged Regression Models: Approaches Time Series I

@ Time domain: model the input series, extract the white
time series driving it ("prewhitening”), regress with
transformed output series
Lagged Regression
o Cross-covariance function Models

o Cross-correlation function

@ Frequency domain: Calculate the input’s spectral density,
and the cross-spectral density between input and output,
and find the transfer function relating them, in the
frequency domain.

o Cross spectrum

o Coherence

13.24



Cross-Covariance

Recall that the autocovariance function of a stationary process
{Y:}is

Yx (h) = E[(Xeen — px) (X = px)]-
The cross-covariance functionof two jointly stationary
processes {Y;} and {X;} is

Yxy (h) = E[(Xpn —px) (Ve —py)]-

Note: Jointly stationary = constant means, autoco-
variances depending only on the lag h, and cross-
covariance depends only on h

Spectral Analysis of
Time Series Il

CLEMS@®N

UNITVERSITY

Lagged Regression
Models

13.25



Cross-Correlation P ime Serios

Time Series Il

CLEMS@N
The cross-correlation function of jointly stationary {X;} and B
{Yi}is
h
pxy (h) = WY—()
Vx (0)7y (0)
Notice that pxy (h) = py x (=h) but pxy (h) is not necessarily F s

equal to pxy (-h)

Example: Suppose that Y; = 5 X;_, + W, for { X} stationay and
uncorrelated with {W,}, and {W,} a zero mean white noise.
Then {X,;} and {Y;} are jointly stationary, with uy = Bux,

yxy (h) = Byx(h+1).

o If >0, we say X, leads Y;

o If£<0,wesay X, lags Y;

13.26



Sample Cross-Covariance and Sample Cross-Correlation S

Time Series Il

: . CLEMS@N
The sample cross-covariance is

R 1 n-h B B
xy (h) = - o (ween =) (ye - )
=1

for h > 0. Then sample CCF is

Lagged Regression

Models
. yxy (h
pxy (h) = 7—()
VAx(0)3y (0)
SOl vs Recruitment
0.2
ok R Rieielett B s H """""""""""""""""" A e R L a | TRt St b
o FFeey H 14—‘————wfHf\llftmfwwuﬂﬁu‘,l”
Z0.4-
~06-— T T T T T T
-3 -2 —1 0 1 2 3
LAG + 12

Example: CCF of SOI and recruitment has a peak at i = —6.
Thus, SOI leads recruitment by 6 months
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Lagged Regression in the Time Domain P e Serioalh
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Suppose we wish to fit a lagged regression model of the form

}/t = B(B)Xt + ‘/t = Z ﬁth_j + %7 Lagged Regression

7=0 Models

where X, is an observed input series, Y; is the observed output
series, and V; is a stationary noise process, uncorrelated with
X;.

One approach (pioneered by Box and Jenkins) is to fit ARMA
models for X; and V;, and then find a simple rational
representation for §(B). This is the transfer function models

13.28



Spectral Analysis of

Lagged Regression in the Time Domain Time Series I
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Vi =B(B)X:+Vi=), B;Xij+V,,
i=0
! Lagged Regression

For example: Models
_ 0x(B)
Ko ¢X(B)Wt’
Ov(B)
= Z
"
6(B
- 50

Notice the delay B¢, indicating that Y; lags X, by d steps

13.29



Spectral Analysis of

Lagged Regression in the Time Domain Time Series I
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How do we choose all of these parameters? e
o Fit0x(B), ¢x(B) to model the input series {X;}
@ Prewhiten the input series by applying the inverse operator
ox(B)[0x(B) e roover
- ¢x(B) ox(B)
Y: = Y: = B(B)W, Vi
t 6x(B) = B(B)W; + 0x(B) t

@ Calculate the cross-correlation of Y, with W,

15 () =E[FroV] = E [z ﬁjwﬂh_jwt] o b
7=0

to give an indication of the behavior of 5(B)

o Estimate the coefficients of 5(B) and hence fit an ARMA
model for the noise series V;

13.30



The prewhitening step inverts the linear filter X, = Zf(((g)) W,.
Then the lagged regression is between the transformed Y; and

a white series W,. This makes it easy to determine a suitable
lag

Example: In the SOl/recruitment series, we treat SOl as an
input, estimate an AR(1) model, prewhiten it, and consider the
cross-correlation between the transformed recruitment series
and the prewhitened SOI. This shows a large peak at lag -5
(corresponding to the SOI series leading the recruitment
series)

This sequential estimation procedure ¢x,0x, then 3, then

¢v, 0y is rather ad hoc. State space methods (ARMAX model)
offer an alternative, and they are also convenient for
vector-valued input and output series
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Spectral Analysis of

Lagged Regression in the Frequency Domain: Coherence Time Series I

0¥
. . , s
To analyze lagged regression in the frequency domain, we’ll M\I
need the notion of coherence, the analog of cross-correlation
in the frequency domain
Define the cross-spectrum as the Fourier transform of the
cross-correlation, Lagged Regression

Models

fXY(W)— Z 'YXY(h 27r1wh

vxy (h) = Fxy (w)e*™ " duw,

1
2
1

2

provided that Y7”_ [vxy (h)] < o

Notice that fxy (w) is complex: fxy (w) = cxy (w) —igxy (w).
Also, vy x (h) = yxy (~h) implies fy x(w) = fxy (w)

= Cyx ((JJ) = CXY(CU) and qy X (w) = —qu(W)
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@ The squared coherence function is

2 _ fyx(@)P
pY,X(w) - fX(w)fY(w) .

measures the strength of the relationship between X; and
Y; at frequency w

Lagged Regression
Models

° p%,yx(w) is an analog of R?, it measures the fraction of
variance in Y; at frequency w, fy (w), explained by X,

@ p¥ x(w) = |py,x(w)[*, where

frx(w)
fx (W) fy (w)

py.x(w) =

13.33



Estimating Squared Coherence

Recall that we estimated the spectral density using the
smoothed squared modulus of the DFT of the series,

- 1 (=2 ,
Fx(wi) =7 20 ldx(w)
k=—(L-1)/2
(L-1)/2

1 -
=7 Y dx(wjir)dx (wjin).
k=—(L-1)/2

We can estimate the cross spectral density using the same
sample estimate,

) | @D
Ixy(wj) = 7 Y dx(wisk)dy (wjek)
k=—(L-1)/2

Also, we can estimate the squared coherence using these

estimates, ~
|y x (@)?

J?X(W)J?Y(w).

ﬁ%‘,x (w) =

Spectral Analysis of
Time Series Il

CLEMS@®N

UNITVERSITY

Lagged Regression
Models
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Estimating Squared Coherence: SOI/Recruitment Example Time Series Il
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1.0
|
A |
0.8 \
Lagged Regression
Models
&
$0.6 —
o
Q
k=
S
3]
°
<
S0.4
o
@

0.2

0.0 A A A Ly

frequency
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Recall Lagged Regression Models Time Series Il
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Yi= Y BiXej+Vi

je=oo

The projection theorem tells us that the coefficients that
minimize the mean squared error,

satisfy the orthogonality conditions

Lagged Regression
Models

E

El(y;— > @Xt_j)xt_k]:o, k=0,+1,42, -

=0

Taking the expectations inside leads to the normal equations

2 Bivx (k=) =ryx(k), k=0,+1,2,

j=—o0o
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Spectral Analysis of

Lagged Regression Models in the Frequency Domain Time Series I
CLEMS@N

We could solve these equations for the 3; using the sample I
autocovariance and sample cross-covariance. But it is more

convenient to use estimates of the spectra and cross-spectrum

because convolution with {5, } in the time domain is equivalent

to multiplication by the Fourier transform of {5;} in the O

frequency domain Models

We replace the autocovariance and cross-covariance with the
inverse Fourier transforms of the spectral density and
cross-spectral density in the orthogonality conditions, i.e.,
replace

Z Bivx(k-j) k=0,+1,£2,--

J

by
f? Z ,iji%w(k_j)fx(w) dw

j==o0
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Spectral Analysis of

Lagged Regression Models in the Frequency Domain Time Series I
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This gives, for k =0,+1,£2,---,

/

27riwkaX (UJ) dw,

> et fy(w)do =

NI= o

J=

= [f >k B(w) fx (w) dw = f

Lagged Regression

T () dov,

N\H w\»—- M\H m_.

where B(w) = X532, e”>™J 3; is the Fourier transform of the
coefficient sequence j;. Since the Fourier transform is unique,
the orthogonality conditions are equivalent to

’ B(w)fx(w) = frx(w). ‘

Then we may take

- fyx (wr)
B(wy) = —=————~
(wr) (o)
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Lagged Regression Models in the Frequency Domain
We can write the mean squared error at the solution as follows

J=—o00 J=—00

El(ﬁ - i 6th—j)Yt‘| =y (0) - i Bivxy (—7)

1

= [ (v (@) = B@)fxy (@) dw

-/

fY(W)(l_ fX(W)fY(W)
N ) i
i )(1 @) (@)

B [l fy (W) (1~ p%’,X(w)) dw.

:>MSE:/_

= fy(w) = (1-p3 x(w)) fy (W)

—

plm NlE e NI e NIE

Fr (@)1 - p§ x (w)) dw

Nl= ol

Jrx (W) fxy(w) ) o

Spectral Analysis of
Time Series Il

CLEMS@N

ssssssss

Lagged Regression
Models
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Spectral Analysis of

Lagged Regression Models in the Frequency Domain Time Series I
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l

fr (@) (1= p¥ x (w)) dw.

Thus, p%,,X(w) indicates how the variance of {Y;} at a
frequency w is accounted for by {X;}. Compare with the
corresponding decomposition for random variables: P

Models
E(Y - BX) =03 (1-py x)
We can estimate the 5, in the frequency domain:

fYX(wk)
Fx (wr)

We can approximate the inverse Fourier transform of B(w),
i [

1

Recall MSE = f

B(wi) =

> B(w) dw

V= ol

via the sum,

M-1

Z B w])e 27rzwk]
k=0
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Spectral Analysis of

Lagged Regression Models in the Frequency Domain Time Series I
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Here is the procedure:

@ Estimate the spectral density fx(w) and cross-spectral
density fy x(w)

Lagged Regression
Models

@ Compute the transfer function B(w):

B(wn) = Frx(wr)
Bl = )

© Take the inverse Fourier transform to obtain the impulse
response function 5;:

1 Mz—:l . dmioon i
B =— B(wj)e =™k,
J M = J
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