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Review: Nonparametric Spectral Estimation
Periodogram: I(ωj) = ∣d(ωj)∣

2, where

d(ωj) = n
− 1

2

n

∑
t=1
yte

−2πiωjt, ωj =
j

n
, j = 0,1,⋯, n − 1

I(ωj)

1
2
f(ωj)

≈i.i.d∼ χ2
2, j = 1,⋯,m = n−1

2
⇒ E[I(ωj)] ≈ f(ωj)

(unbiased)

But Var[I(ωj)] ≈ f2(ωj) (inconsistent)

Smooth the periodogram
Averaged periodogram: f̄(ωj) = 1

L ∑
m
k=−m I(ωj+k)

Smoothed periodogram: f̄(ωj) = ∑m
k=−mWm(k)I(ωj+k)

Pointwise CI for f(ωj):

νf̄(ωj)

χ2
ν(1 − α/2)

≤ f(ωj) ≤
νf̄(ωj)

χ2
ν(α/2)
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Spectral ANOVA

For odd n = 2m + 1, the inverse transform can be written

yt − ȳ =
2

√
n

m

∑
j=1

[dcos(ωj) cos(2πωjt) + dsin(ωj) sin(2πωjt)] .

Square and sum over t; orthogonality of sines and cosines
implies that

n

∑
t=1

(yt − ȳ)
2
= 2

m

∑
j=1

[dcos(ωj)
2
+ dsin(ωj)

2]

= 2
m

∑
j=1

I(ωj)

We have partitioned∑nt=1(yt−ȳ)
2 into 2×∑

m
j=1 I(ωj). This

leads to Spectral ANOVA



Spectral Analysis of
Time Series II

Review

Southern Oscillation
Index Example

Parametric Spectral
Estimation

Lagged Regression
Models

13.5

Spectral ANOVA (Cont’d)

Source df SS MS
ω1 2 2I(ω1) I(ω1)

ω2 2 2I(ω2) I(ω2)

⋮ ⋮ ⋮ ⋮

ωm 2 2I(ωm) I(ωm)

Total 2m = n − 1 ∑(yt − ȳ)
2

Toy example:
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Example: Southern Oscillation Index (SOI)

Southern Oscillation Index (SOI) for a period of 453 months
ranging over the years 1950-1987

Time

so
i

1950 1960 1970 1980

−1.0

−0.5

0.0

0.5

1.0

0.0 0.5 1.0 1.5 2.0
−0.4

−0.2

0.0

0.2

0.4

0.6

Lag

A
C

F

What are the hidden periods of SOI?
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SOI Example: Raw Periodogram

0 1 2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

1.0

Frequency (year)

sp
ec

tr
um

Series: soi  |  Raw Periodogram  |  taper = 0

0.25

An approximate 95% confidence interval for f(ω):

ω Period Power Lower Upper
1
48

4 years 0.0537 0.0146 2.1222
1
12

1 year 0.9722 0.2636 38.4011
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SOI Example: Averaged Periodogram (Daniell with m = 4)

0 1 2 3 4 5 6

0.00
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0.10
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Frequency (year)

Series: soi  |  Smoothed Periodogram  |  taper = 0

0.25

An approximate 95% confidence interval for f(ω):

ω Period Power Lower Upper
1
48

4 years 0.0495 0.0279 0.1113
1
12

1 year 0.1191 0.0670 0.2677
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SOI Example: Smoothed Periodogram (modified Daniell c(3,3))

0 1 2 3 4 5 6

0.00

0.05

0.10

0.15

Frequency (year)

Series: soi  |  Smoothed Periodogram  |  taper = 0.1

0.25

An approximate 95% confidence interval for f(ω):

ω Period Power Lower Upper
1
48

4 years 0.0502 0.0283 0.1129
1
12

1 year 0.1675 0.0943 0.3767
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SOI Example: Apply Tapering to Alleviate Spectral Leakage

0 1 2 3 4 5 6

0.002

0.005

0.010

0.020

0.050

0.100

Frequency (year)

1/4

full taper
no taper

leakage

−0.4 −0.2 0.0 0.2 0.4

The tapered spectrum does a better job in separating the
yearly cycle ω = 1 and the El Niño cycle ω = 1

4
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Seasonally Adjusted SOI [Source: Peter Bloomfield’s ST 730
Lecture Notes]

The Southern Oscillation Index data provided by Shumway
and Stoffer is not seasonally adjusted, which explains the
substantial peaks in the periodogram at the annual
frequency

So the series is non-stationary, and has neither an
autocovariance function nor a spectral density function

A more sensible analysis uses the seasonally adjusted
series. (Bloomfield did this by fitting a seasonal means
model using data from 1876-2010.)
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SOI Example from Bloomfield: Smoothed Periodogram

0 1 2 3 4 5 6

0

20

40

60

80

100

120

Frequency in cycles per year

2 1 0.5 0.25 0.167
Period in years

Note that the peak at the annual frequency disappear
due to the removal of the annual cycle
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Parametric versus Nonparametric Estimation

Parametric estimation: estimate a model that is specified
by a fixed number of parameters

Nonparametric estimation: estimate a model that is
specified by a number of parameters that can grow as the
sample grows

The smoothed periodogram estimates we have considered are
nonparametric: the estimates of the spectral density can be
parameterized by estimated values at ωj ’s. As n ↑, the number
of distinct frequency values increases

The time domain models we considered are parametric. For
example, an ARMA(p,q) process can be completely specified
with p + q + 1 parameters
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Parametric Spectral Estimation

The typical approach is to use the maximum likelihood
parameter estimates (φ̂1,⋯, φ̂p, σ̂

2) for the parameters of an
AR(p), and then compute f(ω) for this estimated AR model:

f̂(ω) =
σ̂2

∣φ̂(e−2πω)∣2

For large n,

Var(f̂(ω)) ≈
2p

n
f2(ω)

The bias decreases as p ↑, the number of parameters
increase, as one can model more complex spectra

The variance increase linealy with p
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ARMA Spectral Estimation

Sometimes ARMA models are used instead

Estimate the parameters of an ARMA(p,q) model and
compute its spectral density:

f̂(ω) = σ̂2
∣
θ̂(e−2πiω)
φ̂(e−2πiω)

∣

2

.

However, it is more common to use large AR models,
rather than ARMA models
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Parametric versus Nonparametric Spectral Estimation

The main advantage of parametric spectral estimation
over nonparametric is that it often gives better frequency
resolution of a small number of peaks

This is especially important if there is more than one peak
at nearby frequencies

The disadvantage of parametric spectral estimation is the
inflexibility due to the use of the restricted class of ARMA
models.
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Parametric Spectral Estimation: Summary

Given data y1, y2,⋯, yn,

1 Estimate the AR parameters (φ1, φ2,⋯, φp, σ
2) using

maximum likelihood or Yule-Walker/least squares, choose
a suitable model order p using AIC or BIC

2 Use the estimates (φ̂1, φ̂2,⋯, φ̂p, σ̂
2) to compute the

estimated spectral density:

f̂(ω) =
σ̂2

∣φ̂(e−2πiω)∣
2
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Example: AR(1) with φ = 0.8

1 Use AIC to select p, the order of the AR model

2 Use the estimates (φ̂1, φ̂2,⋯, φ̂p, σ̂
2) to compute the

estimated spectral
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Example: ARMA(1, 1) with φ = 0.8 and θ = 0.5

1 Use AIC to select p, the order of the AR model

2 Use the estimates (φ̂1, φ̂2,⋯, φ̂p, σ̂
2) to compute the

estimated spectral
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Example: AR(2) with φ1 = 1.5 and φ2 = −0.95
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SOI Example
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Lagged Regression Models

Consider a lagged regression model of the form

Yt =
∞
∑
h=−∞

βhXt−h + Vt,

where Xt is an observed input time series. Yt is the observed
output time series, and Vt is a stationary noise process.

Such a model is useful for

Identifying the (best linear) relationship between two time
series Xt and Yt

Forecasting one time series (likely Yt) from the other (likely
Xt). We may want to let βh = 0 for h < 0
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An Example of Lagged Regression Model

Southern Oscillation Index

Time
1950 1960 1970 1980

−1.0

−0.5

0.0

0.5

1.0

Recruitment

Time
1950 1960 1970 1980

0
20
40
60
80

100

We may wish to identify how the values of the recruitment
series is related to the SOI

We may wish to predict future values of recruitment from
the SOI.
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Lagged Regression Models: Approaches

Time domain: model the input series, extract the white
time series driving it (”prewhitening”), regress with
transformed output series

Cross-covariance function

Cross-correlation function

Frequency domain: Calculate the input’s spectral density,
and the cross-spectral density between input and output,
and find the transfer function relating them, in the
frequency domain.

Cross spectrum

Coherence
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Cross-Covariance

Recall that the autocovariance function of a stationary process
{Yt} is

γX(h) = E [(Xt+h − µX) (Xt − µX)] .

The cross-covariance functionof two jointly stationary
processes {Yt} and {Xt} is

γXY (h) = E [(Xt+h − µX) (Yt − µY )] .

Note: Jointly stationary = constant means, autoco-
variances depending only on the lag h, and cross-
covariance depends only on h
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Cross-Correlation

The cross-correlation function of jointly stationary {Xt} and
{Yt} is

ρXY (h) =
γXY (h)

√
γX(0)γY (0)

.

Notice that ρXY (h) = ρY X(−h) but ρXY (h) is not necessarily
equal to ρXY (−h)

Example: Suppose that Yt = βXt−` +Wt for {Xt} stationay and
uncorrelated with {Wt}, and {Wt} a zero mean white noise.
Then {Xt} and {Yt} are jointly stationary, with µY = βµX ,

γXY (h) = βγX(h + `).

If ` > 0, we say Xt leads Yt

If ` < 0, we say Xt lags Yt
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Sample Cross-Covariance and Sample Cross-Correlation

The sample cross-covariance is

γ̂XY (h) =
1

n

n−h
∑
i=1

(xt+h − x̄)(yt − ȳ)

for h ≥ 0. Then sample CCF is

ρ̂XY (h) =
γ̂XY (h)

√
γ̂X(0)γ̂Y (0)

−3 −2 −1 0 1 2 3

−0.6
−0.4
−0.2

0.0
0.2

SOI vs Recruitment

LAG ÷ 12

C
C

F

Example: CCF of SOI and recruitment has a peak at h = −6.
Thus, SOI leads recruitment by 6 months
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Lagged Regression in the Time Domain

Suppose we wish to fit a lagged regression model of the form

Yt = β(B)Xt + Vt =
∞
∑
j=0

βjXt−j + Vt,

where Xt is an observed input series, Yt is the observed output
series, and Vt is a stationary noise process, uncorrelated with
Xt.

One approach (pioneered by Box and Jenkins) is to fit ARMA
models for Xt and Vt, and then find a simple rational
representation for β(B). This is the transfer function models
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Lagged Regression in the Time Domain

Yt = β(B)Xt + Vt =
∞
∑
j=0

βjXt−j + Vt,

For example:

Xt =
θX(B)

φX(B)
Wt,

Vt =
θV (B)

φV (B)
Zt,

β(B) =
δ(B)

ω(B)
Bd

Notice the delay Bd, indicating that Yt lags Xt by d steps
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Lagged Regression in the Time Domain

How do we choose all of these parameters?

Fit θX(B), φX(B) to model the input series {Xt}

Prewhiten the input series by applying the inverse operator
φX(B)/θX(B) ∶

Ỹt =
φX(B)

θX(B)
Yt = β(B)Wt +

φX(B)

θX(B)
Vt

Calculate the cross-correlation of Ỹt with Wt,

γỸ ,W (h) = E [Ỹt+hWt] = E
⎡
⎢
⎢
⎢
⎣

∞
∑
j=0

βjWt+h−jWt

⎤
⎥
⎥
⎥
⎦
= σ2

Wβh

to give an indication of the behavior of β(B)

Estimate the coefficients of β(B) and hence fit an ARMA
model for the noise series Vt
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Lagged Regression in the Time Domain

The prewhitening step inverts the linear filter Xt =
θX(B)
φX(B)Wt.

Then the lagged regression is between the transformed Yt and
a white series Wt. This makes it easy to determine a suitable
lag

Example: In the SOI/recruitment series, we treat SOI as an
input, estimate an AR(1) model, prewhiten it, and consider the
cross-correlation between the transformed recruitment series
and the prewhitened SOI. This shows a large peak at lag −5
(corresponding to the SOI series leading the recruitment
series)

This sequential estimation procedure φX , θX , then β, then
φV , θV is rather ad hoc. State space methods (ARMAX model)
offer an alternative, and they are also convenient for
vector-valued input and output series
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Lagged Regression in the Frequency Domain: Coherence

To analyze lagged regression in the frequency domain, we’ll
need the notion of coherence, the analog of cross-correlation
in the frequency domain

Define the cross-spectrum as the Fourier transform of the
cross-correlation,

fXY (ω) =
∞
∑
h=−∞

γXY (h)e−2πiωh,

γXY (h) = ∫

1
2

− 1
2

fXY (ω)e2πiωh dω,

provided that ∑∞h=−∞ ∣γXY (h)∣ <∞

Notice that fXY (ω) is complex: fXY (ω) = cXY (ω) − iqXY (ω).
Also, γY X(h) = γXY (−h) implies fY X(ω) = fXY (ω)

⇒ cY X(ω) = cXY (ω) and qY X(ω) = −qXY (ω)
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Coherence

The squared coherence function is

ρ2Y,X(ω) =
∣fY X(ω)∣2

fX(ω)fY (ω)
.

measures the strength of the relationship between Xt and
Yt at frequency ω

ρ2Y,X(ω) is an analog of R2, it measures the fraction of
variance in Yt at frequency ω, fY (ω), explained by Xt

ρ2Y,X(ω) = ∣ρY,X(ω)∣2, where

ρY,X(ω) =
fY X(ω)

√
fX(ω)fY (ω)
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Estimating Squared Coherence

Recall that we estimated the spectral density using the
smoothed squared modulus of the DFT of the series,

f̄X(ωj) =
1

L

(L−1)/2
∑

k=−(L−1)/2
∣dX(ωj)∣

2

=
1

L

(L−1)/2
∑

k=−(L−1)/2
dX(ωj+k)dX(ωj+k).

We can estimate the cross spectral density using the same
sample estimate,

f̄XY (ωj) =
1

L

(L−1)/2
∑

k=−(L−1)/2
dX(ωj+k)dY (ωj+k)

Also, we can estimate the squared coherence using these
estimates,

ρ̄2Y,X(ω) =
∣f̄Y X(ω)∣2

f̄X(ω)f̄Y (ω)
.
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Estimating Squared Coherence: SOI/Recruitment Example
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Recall Lagged Regression Models

Yt =
∞
∑
j=−∞

βjXt−j + Vt

The projection theorem tells us that the coefficients that
minimize the mean squared error,

E
⎡
⎢
⎢
⎢
⎢
⎣

⎛

⎝
Yt −

∞
∑
j=−∞

βjXt−j
⎞

⎠

2⎤
⎥
⎥
⎥
⎥
⎦

satisfy the orthogonality conditions

E
⎡
⎢
⎢
⎢
⎢
⎣

⎛

⎝
Yt −

∞
∑
j=−∞

βjXt−j
⎞

⎠
Xt−k

⎤
⎥
⎥
⎥
⎥
⎦

= 0, k = 0,±1,±2,⋯

Taking the expectations inside leads to the normal equations
∞
∑
j=−∞

βjγX(k − j) = γY X(k), k = 0,±1,±2,⋯
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Lagged Regression Models in the Frequency Domain

We could solve these equations for the βj using the sample
autocovariance and sample cross-covariance. But it is more
convenient to use estimates of the spectra and cross-spectrum
because convolution with {βj} in the time domain is equivalent
to multiplication by the Fourier transform of {βj} in the
frequency domain

We replace the autocovariance and cross-covariance with the
inverse Fourier transforms of the spectral density and
cross-spectral density in the orthogonality conditions, i.e.,
replace

∞
∑
j=−∞

βjγX(k − j) k = 0,±1,±2,⋯

by

∫

1
2

− 1
2

∞
∑
j=−∞

βje
2πiω(k−j)fX(ω)dω
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Lagged Regression Models in the Frequency Domain

This gives, for k = 0,±1,±2,⋯,

∫

1
2

− 1
2

∞
∑
j=−∞

βje
2πiω(k−j)fX(ω)dω = ∫

1
2

− 1
2

e2πiωkfY X(ω)dω,

⇒ ∫

1
2

− 1
2

e2πiωkB(ω)fX(ω)dω = ∫

1
2

− 1
2

e2πiωkfY X(ω)dω,

where B(ω) = ∑
∞
j=−∞ e−2πiωjβj is the Fourier transform of the

coefficient sequence βj . Since the Fourier transform is unique,
the orthogonality conditions are equivalent to

B(ω)fX(ω) = fY X(ω).

Then we may take

B̂(ωk) =
f̂Y X(ωk)

f̂X(ωk)
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Lagged Regression Models in the Frequency Domain
We can write the mean squared error at the solution as follows

E
⎡
⎢
⎢
⎢
⎢
⎣

⎛

⎝
Yt −

∞
∑
j=−∞

βjXt−j
⎞

⎠
Yt

⎤
⎥
⎥
⎥
⎥
⎦

= γY (0) −
∞
∑
j=−∞

βjγXY (−j)

= ∫

1
2

− 1
2

(fY (ω) −B(ω)fXY (ω)) dω

= ∫

1
2

− 1
2

fY (ω)(1 −
fY X(ω)fXY (ω)

fX(ω)fY (ω)
) dω

= ∫

1
2

− 1
2

fY (ω)(1 −
∣fY X(ω)∣2

fX(ω)fY (ω)
) dω

= ∫

1
2

− 1
2

fY (ω)(1 − ρ2Y,X(ω))dω.

⇒MSE = ∫

1
2

− 1
2

fY (ω)(1 − ρ2Y X(ω))dω

⇒ fV (ω) = (1 − ρ2Y,X(ω)) fY (ω)
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Lagged Regression Models in the Frequency Domain

Recall MSE = ∫

1
2

− 1
2

fY (ω)(1 − ρ2Y,X(ω))dω.

Thus, ρ2Y,X(ω) indicates how the variance of {Yt} at a
frequency ω is accounted for by {Xt}. Compare with the
corresponding decomposition for random variables:

E(Y − βX) = σ2
Y (1 − ρ2Y,X)

We can estimate the βj in the frequency domain:

B̂(ωk) =
f̂Y X(ωk)

f̂X(ωk)
.

We can approximate the inverse Fourier transform of B̂(ω),

β̂j = ∫

1
2

− 1
2

e2πiωjB̂(ω)dω

via the sum,

β̂j =
1

M

M−1
∑
k=0

B̂(ωj)e
−2πiωkj .
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Lagged Regression Models in the Frequency Domain

Here is the procedure:

1 Estimate the spectral density fX(ω) and cross-spectral
density fY X(ω)

2 Compute the transfer function B̂(ω):

B̂(ωk) =
f̂Y X(ωk)

f̂X(ωk)
.

3 Take the inverse Fourier transform to obtain the impulse
response function βj :

β̂j =
1

M

M−1
∑
k=0

B̂(ωj)e
−2πiωkj .
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