## Lecture 13

## Spectral Analysis of Time Series II

Readings: CC08 Chapter 14; BD16 Chapter 4, Chapter 10.1; SS17 Chapter 1.5-1.6, Chapter 4.4-Chapter 4.6, Chapter 4.8, Chpater 5.5

MATH 8090 Time Series Analysis Week 13 Spectral Analysis of Time Series II



#### Review

Southern Oscillation ndex Example

Parametric Spectral Estimation

agged Regression

Whitney Huang Clemson University



Review











Review

Southern Oscillation ndex Example

Parametric Spectral Estimation

### **Review: Nonparametric Spectral Estimation**

• Periodogram:  $I(\omega_j) = |d(\omega_j)|^2$ , where

$$d(\omega_j) = n^{-\frac{1}{2}} \sum_{t=1}^n y_t e^{-2\pi i \omega_j t}, \, \omega_j = \frac{j}{n}, \, j = 0, 1, \dots, n-1$$

• 
$$\frac{I(\omega_j)}{\frac{1}{2}f(\omega_j)} \xrightarrow{\approx i.i.d} \chi_2^2, j = 1, \cdots, m = \frac{n-1}{2} \Rightarrow \mathbb{E}[I(\omega_j)] \approx f(\omega_j)$$
  
(unbiased)

- But  $\operatorname{Vor}[I(\omega_j)] \approx f^2(\omega_j)$  (inconsistent)
- Smooth the periodogram
  - Averaged periodogram:  $\bar{f}(\omega_j) = \frac{1}{L} \sum_{k=-m}^{m} I(\omega_{j+k})$
  - Smoothed periodogram:  $\bar{f}(\omega_j) = \sum_{k=-m}^{m} W_m(k) I(\omega_{j+k})$
- Pointwise CI for  $f(\omega_j)$ :

$$\frac{\nu \bar{f}(\omega_j)}{\chi_{\nu}^2(1-\alpha/2)} \le f(\omega_j) \le \frac{\nu \bar{f}(\omega_j)}{\chi_{\nu}^2(\alpha/2)}$$





#### Review

Southern Oscillation

Parametric Spectral Estimation

## **Spectral ANOVA**

• For odd n = 2m + 1, the inverse transform can be written

$$y_t - \bar{y} = \frac{2}{\sqrt{n}} \sum_{j=1}^m \left[ d_{\cos}(\omega_j) \cos(2\pi\omega_j t) + d_{\sin}(\omega_j) \sin(2\pi\omega_j t) \right].$$

 Square and sum over t; orthogonality of sines and cosines implies that

$$\sum_{t=1}^{n} (y_t - \bar{y})^2 = 2 \sum_{j=1}^{m} \left[ d_{\cos}(\omega_j)^2 + d_{\sin}(\omega_j)^2 \right]$$
$$= 2 \sum_{j=1}^{m} I(\omega_j)$$

We have partitioned  $\sum_{t=1}^{n} (y_t - \bar{y})^2$  into  $2 \times \sum_{j=1}^{m} I(\omega_j)$ . This leads to Spectral ANOVA





#### Review

Southern Oscillation ndex Example

Parametric Spectral Estimation

## Spectral ANOVA (Cont'd)

| Source     | df         | SS                       | MS            |
|------------|------------|--------------------------|---------------|
| $\omega_1$ | 2          | $2I(\omega_1)$           | $I(\omega_1)$ |
| $\omega_2$ | 2          | $2I(\omega_2)$           | $I(\omega_2)$ |
| ÷          | ÷          | ÷                        | ÷             |
| $\omega_m$ | 2          | $2I(\omega_m)$           | $I(\omega_m)$ |
| Total      | 2m = n - 1 | $\sum (y_t - \bar{y})^2$ |               |

#### Spectral Analysis of Time Series II



#### Review

Southern Oscillation ndex Example

Parametric Spectral Estimation

Lagged Regression Models

#### Toy example:

Residuals 0.0.0000

> x <- c(1, 2, 3, 2, 1) - mean(x) > c1 <- cos(2 \* pi \* (1:5) \* (1 / 5)); s1 <- sin(2 \* pi \* (1:5) \* (1 / 5)) > c2 <- cos(2 \* pi \* (1:5) \* (2 / 5)); s2 <- sin(2 \* pi \* (1:5) \* (2 / 5)) > omegal <- cbind(c1, s1); omega2 <- cbind(c2, s2) > anova(lm(x ~ omega1 + omega2)) Warning in anova.lm(lm(x ~ omega1 + omega2)) : ANOVA F-tests on an essentially perfect fit are unreliable Analysis of Variance Table Response: x Df Sum Sq Mean Sq F value Pr(>F) omega1 2 2.74164 1.37082 omega2 2 0.05836 0.02918

## Example: Southern Oscillation Index (SOI)

Southern Oscillation Index (SOI) for a period of 453 months ranging over the years 1950-1987



Spectral Analysis of Time Series II



#### Review

Southern Oscillation ndex Example

Parametric Spectral Estimation

## SOI Example: Raw Periodogram



Spectral Analysis of Time Series II



Review

Southern Oscillation ndex Example

Parametric Spectral Estimation

Lagged Regression Models

An approximate 95% confidence interval for  $f(\omega)$ :

| ω              | Period  | Power  | Lower  | Upper   |
|----------------|---------|--------|--------|---------|
| $\frac{1}{48}$ | 4 years | 0.0537 | 0.0146 | 2.1222  |
| $\frac{1}{12}$ | 1 year  | 0.9722 | 0.2636 | 38.4011 |

#### **SOI Example: Averaged Periodogram (Daniell with** m = 4**)**



Spectral Analysis of Time Series II



Review

Southern Oscillation ndex Example

Parametric Spectral Estimation

Lagged Regression Models

An approximate 95% confidence interval for  $f(\omega)$ :

| ω              | Period  | Power  | Lower  | Upper  |
|----------------|---------|--------|--------|--------|
| $\frac{1}{48}$ | 4 years | 0.0495 | 0.0279 | 0.1113 |
| $\frac{1}{12}$ | 1 year  | 0.1191 | 0.0670 | 0.2677 |

#### **SOI Example: Smoothed Periodogram (modified Daniell** c(3,3)**)**



Spectral Analysis of Time Series II



Review

Southern Oscillation ndex Example

Parametric Spectral Estimation

Lagged Regression Models

An approximate 95% confidence interval for  $f(\omega)$ :

| ω              | Period  | Power  | Lower  | Upper  |
|----------------|---------|--------|--------|--------|
| $\frac{1}{48}$ | 4 years | 0.0502 | 0.0283 | 0.1129 |
| $\frac{1}{12}$ | 1 year  | 0.1675 | 0.0943 | 0.3767 |

## SOI Example: Apply Tapering to Alleviate Spectral Leakage

0.100--0.4 -02 0.0 0.2 0.050leakage full taper no taper 0.020 0.010-0.005-0.002-1/4 n 2 5 6 Frequency (year)

Spectral Analysis of Time Series II



#### Review

Southern Oscillation

Parametric Spectral Estimation

Lagged Regression Models

The tapered spectrum does a better job in separating the yearly cycle  $\omega$  = 1 and the El Niño cycle  $\omega$  =  $\frac{1}{4}$ 

## Seasonally Adjusted SOI [Source: Peter Bloomfield's ST 730 Lecture Notes]

- The Southern Oscillation Index data provided by Shumway and Stoffer is not seasonally adjusted, which explains the substantial peaks in the periodogram at the annual frequency
- So the series is non-stationary, and has neither an autocovariance function nor a spectral density function
- A more sensible analysis uses the seasonally adjusted series. (Bloomfield did this by fitting a seasonal means model using data from 1876-2010.)





#### Review

Southern Oscillation ndex Example

Parametric Spectral Estimation

## SOI Example from Bloomfield: Smoothed Periodogram



Spectral Analysis of Time Series II



Review

Southern Oscillation ndex Example

Parametric Spectral Estimation

agged Regression

# Note that the peak at the annual frequency disappear due to the removal of the annual cycle

#### Parametric versus Nonparametric Estimation

- Parametric estimation: estimate a model that is specified by a fixed number of parameters
- Nonparametric estimation: estimate a model that is specified by a number of parameters that can grow as the sample grows

The smoothed periodogram estimates we have considered are **nonparametric**: the estimates of the spectral density can be parameterized by estimated values at  $\omega_j$ 's. As  $n \uparrow$ , the number of distinct frequency values increases

The time domain models we considered are **parametric**. For example, an ARMA(p,q) process can be completely specified with p + q + 1 parameters





Review

Southern Oscillation ndex Example

Parametric Spectral Estimation

## **Parametric Spectral Estimation**

The typical approach is to use the maximum likelihood parameter estimates  $(\hat{\phi}_1, \cdots, \hat{\phi}_p, \hat{\sigma}^2)$  for the parameters of an AR(*p*), and then compute  $f(\omega)$  for this estimated AR model:

$$\hat{f}(\omega) = \frac{\hat{\sigma}^2}{|\hat{\phi}(e^{-2\pi\omega})|^2}$$

For large n,

$$\operatorname{Vor}(\widehat{f}(\omega)) pprox rac{2p}{n} f^2(\omega)$$

- The bias decreases as p↑, the number of parameters increase, as one can model more complex spectra
- The variance increase linealy with p



Review

Southern Oscillation Index Example

Parametric Spectral Estimation

## **ARMA Spectral Estimation**

- Sometimes ARMA models are used instead
- Estimate the parameters of an ARMA(p,q) model and compute its spectral density:

 $\hat{f}(\omega) = \hat{\sigma}^2 \left| \frac{\hat{\theta}(e^{-2\pi i\omega})}{\hat{\phi}(e^{-2\pi i\omega})} \right|^2.$ 

 However, it is more common to use large AR models, rather than ARMA models



#### Review

Southern Oscillation ndex Example

Parametric Spectral Estimation

## Parametric versus Nonparametric Spectral Estimation

- The main advantage of parametric spectral estimation over nonparametric is that it often gives better frequency resolution of a small number of peaks
- This is especially important if there is more than one peak at nearby frequencies
- The disadvantage of parametric spectral estimation is the inflexibility due to the use of the restricted class of ARMA models.





#### Review

Southern Oscillation

Parametric Spectral Estimation

## **Parametric Spectral Estimation: Summary**

Given data  $y_1, y_2, \cdots, y_n$ ,

- Estimate the AR parameters (φ<sub>1</sub>, φ<sub>2</sub>, ···, φ<sub>p</sub>, σ<sup>2</sup>) using maximum likelihood or Yule-Walker/least squares, choose a suitable model order p using AIC or BIC
- **②** Use the estimates  $(\hat{\phi}_1, \hat{\phi}_2, \dots, \hat{\phi}_p, \hat{\sigma}^2)$  to compute the estimated spectral density:

$$\hat{f}(\omega) = \frac{\hat{\sigma}^2}{\left|\hat{\phi}(e^{-2\pi i\omega})\right|^2}$$





Review

Southern Oscillation ndex Example

Parametric Spectral Estimation

#### **Example: AR(1) with** $\phi = 0.8$

- Use AIC to select p, the order of the AR model
- Use the estimates (\$\dot{\phi}\_1\$, \$\dot{\phi}\_2\$, \$\dots\$, \$\dot{\phi}\_p\$, \$\dot{\phi}^2\$) to compute the estimated spectral







Review

Southern Oscillation ndex Example

Parametric Spectral Estimation

#### **Example:** ARMA(1, 1) with $\phi = 0.8$ and $\theta = 0.5$

- Use AIC to select p, the order of the AR model
- Use the estimates (\$\dot{\phi}\_1\$, \$\dot{\phi}\_2\$, \$\dots\$, \$\dot{\phi}\_p\$, \$\dot{\phi}^2\$) to compute the estimated spectral







Review

Southern Oscillation

Parametric Spectral Estimation

## **Example: AR(**2**) with** $\phi_1 = 1.5$ and $\phi_2 = -0.95$







Review

Southern Oscillation

Parametric Spectral Estimation

## **SOI Example**

Series: soi | AIC order = 15





NIVERS

## Lagged Regression Models

Consider a lagged regression model of the form

$$Y_t = \sum_{h=-\infty}^{\infty} \beta_h X_{t-h} + V_t,$$

where  $X_t$  is an observed input time series.  $Y_t$  is the observed output time series, and  $V_t$  is a stationary noise process.

Such a model is useful for

- Identifying the (best linear) relationship between two time series X<sub>t</sub> and Y<sub>t</sub>
- Forecasting one time series (likely  $Y_t$ ) from the other (likely  $X_t$ ). We may want to let  $\beta_h = 0$  for h < 0





Review

Southern Oscillation ndex Example

Parametric Spectral Estimation

## An Example of Lagged Regression Model



- We may wish to identify how the values of the recruitment series is related to the SOI
- We may wish to predict future values of recruitment from the SOI.

Spectral Analysis of

Time Series II

## Lagged Regression Models: Approaches

- Time domain: model the input series, extract the white time series driving it ("prewhitening"), regress with transformed output series
  - Cross-covariance function
  - Cross-correlation function
- Frequency domain: Calculate the input's spectral density, and the cross-spectral density between input and output, and find the transfer function relating them, in the frequency domain.
  - Cross spectrum
  - Coherence





Review

Southern Oscillation Index Example

Parametric Spectral Estimation

#### **Cross-Covariance**

Recall that the autocovariance function of a stationary process  $\{Y_t\}$  is

 $\gamma_X(h) = \mathbb{E}\left[ (X_{t+h} - \mu_X) (X_t - \mu_X) \right].$ 

The cross-covariance function f two jointly stationary processes  $\{Y_t\}$  and  $\{X_t\}$  is

 $\gamma_{XY}(h) = \mathbb{E}\left[ \left( X_{t+h} - \mu_X \right) \left( Y_t - \mu_Y \right) \right].$ 

**Note**: Jointly stationary = constant means, autocovariances depending only on the lag h, and cross-covariance depends only on h



Review

Southern Oscillation ndex Example

Parametric Spectral Estimation

## **Cross-Correlation**

The cross-correlation function of jointly stationary  $\{X_t\}$  and  $\{Y_t\}$  is

$$\rho_{XY}(h) = \frac{\gamma_{XY}(h)}{\sqrt{\gamma_X(0)\gamma_Y(0)}}.$$

Notice that  $\rho_{XY}(h) = \rho_{YX}(-h)$  but  $\rho_{XY}(h)$  is not necessarily equal to  $\rho_{XY}(-h)$ 

**Example**: Suppose that  $Y_t = \beta X_{t-\ell} + W_t$  for  $\{X_t\}$  stationay and uncorrelated with  $\{W_t\}$ , and  $\{W_t\}$  a zero mean white noise. Then  $\{X_t\}$  and  $\{Y_t\}$  are jointly stationary, with  $\mu_Y = \beta \mu_X$ ,

$$\gamma_{XY}(h) = \beta \gamma_X(h+\ell).$$

- If  $\ell > 0$ , we say  $X_t$  leads  $Y_t$
- If  $\ell < 0$ , we say  $X_t$  lags  $Y_t$





Review

Southern Oscillation ndex Example

Parametric Spectral Estimation

## Sample Cross-Covariance and Sample Cross-Correlation

The sample cross-covariance is

$$\hat{\gamma}_{XY}(h) = \frac{1}{n} \sum_{i=1}^{n-h} (x_{t+h} - \bar{x})(y_t - \bar{y})$$

for  $h \ge 0$ . Then sample CCF is

$$\hat{\rho}_{XY}(h) = \frac{\hat{\gamma}_{XY}(h)}{\sqrt{\hat{\gamma}_X(0)\hat{\gamma}_Y(0)}}$$



**Example**: CCF of SOI and recruitment has a peak at h = -6. Thus, SOI leads recruitment by 6 months



Review

Southern Oscillation ndex Example

Parametric Spectral Estimation

Suppose we wish to fit a lagged regression model of the form

$$Y_t = \beta(B)X_t + V_t = \sum_{j=0}^{\infty} \beta_j X_{t-j} + V_t,$$

where  $X_t$  is an observed input series,  $Y_t$  is the observed output series, and  $V_t$  is a stationary noise process, uncorrelated with  $X_t$ .

One approach (pioneered by Box and Jenkins) is to fit ARMA models for  $X_t$  and  $V_t$ , and then find a simple rational representation for  $\beta(B)$ . This is the transfer function models



Review

Southern Oscillation ndex Example

Parametric Spectral Estimation

$$Y_t = \beta(B)X_t + V_t = \sum_{j=0}^{\infty} \beta_j X_{t-j} + V_t,$$

For example:

$$X_{t} = \frac{\theta_{X}(B)}{\phi_{X}(B)}W_{t},$$
$$V_{t} = \frac{\theta_{V}(B)}{\phi_{V}(B)}Z_{t},$$
$$\beta(B) = \frac{\delta(B)}{\omega(B)}B^{d}$$

Notice the delay  $B^d$ , indicating that  $Y_t$  lags  $X_t$  by d steps



Review

Southern Oscillation ndex Example

Parametric Spectral Estimation

How do we choose all of these parameters?

- Fit  $\theta_X(B)$ ,  $\phi_X(B)$  to model the input series  $\{X_t\}$
- Prewhiten the input series by applying the inverse operator  $\phi_X(B)/\theta_X(B)$ :

$$\tilde{Y}_t = \frac{\phi_X(B)}{\theta_X(B)} Y_t = \beta(B) W_t + \frac{\phi_X(B)}{\theta_X(B)} V_t$$

• Calculate the cross-correlation of  $\tilde{Y}_t$  with  $W_t$ ,

$$\gamma_{\tilde{Y},W}(h) = \mathbb{E}\left[\tilde{Y}_{t+h}W_t\right] = \mathbb{E}\left[\sum_{j=0}^{\infty}\beta_j W_{t+h-j}W_t\right] = \sigma_W^2 \beta_h$$

to give an indication of the behavior of  $\beta(B)$ 

 Estimate the coefficients of β(B) and hence fit an ARMA model for the noise series V<sub>t</sub>



#### Review

Southern Oscillation Index Example

Parametric Spectral Estimation

The prewhitening step inverts the linear filter  $X_t = \frac{\theta_X(B)}{\phi_X(B)}W_t$ . Then the lagged regression is between the transformed  $Y_t$  and a white series  $W_t$ . This makes it easy to determine a suitable lag

**Example**: In the SOI/recruitment series, we treat SOI as an input, estimate an AR(1) model, prewhiten it, and consider the cross-correlation between the transformed recruitment series and the prewhitened SOI. This shows a large peak at lag -5 (corresponding to the SOI series leading the recruitment series)

This sequential estimation procedure  $\phi_X$ ,  $\theta_X$ , then  $\beta$ , then  $\phi_V$ ,  $\theta_V$  is rather ad hoc. State space methods (ARMAX model) offer an alternative, and they are also convenient for vector-valued input and output series





Review

Southern Oscillation ndex Example

Parametric Spectral Estimation

#### Lagged Regression in the Frequency Domain: Coherence

To analyze lagged regression in the frequency domain, we'll need the notion of coherence, the analog of cross-correlation in the frequency domain

Define the cross-spectrum as the Fourier transform of the cross-correlation,

$$f_{XY}(\omega) = \sum_{h=-\infty}^{\infty} \gamma_{XY}(h) e^{-2\pi i \omega h},$$
$$\gamma_{XY}(h) = \int_{-\frac{1}{2}}^{\frac{1}{2}} f_{XY}(\omega) e^{2\pi i \omega h} d\omega,$$

provided that  $\sum_{h=-\infty}^{\infty} |\gamma_{XY}(h)| < \infty$ 

Notice that  $f_{XY}(\omega)$  is complex:  $f_{XY}(\omega) = c_{XY}(\omega) - iq_{XY}(\omega)$ . Also,  $\gamma_{YX}(h) = \gamma_{XY}(-h)$  implies  $f_{YX}(\omega) = \overline{f_{XY}(\omega)}$ 

 $\Rightarrow c_{YX}(\omega) = c_{XY}(\omega)$  and  $q_{YX}(\omega) = -q_{XY}(\omega)$ 





Review

Southern Oscillation Index Example

Parametric Spectral Estimation

#### Coherence

• The squared coherence function is

$$\rho_{Y,X}^2(\omega) = \frac{|f_{YX}(\omega)|^2}{f_X(\omega)f_Y(\omega)}.$$

measures the strength of the relationship between  $X_t$  and  $Y_t$  at frequency  $\omega$ 

•  $\rho_{Y,X}^2(\omega)$  is an analog of  $R^2$ , it measures the fraction of variance in  $Y_t$  at frequency  $\omega$ ,  $f_Y(\omega)$ , explained by  $X_t$ 

•  $\rho_{Y,X}^2(\omega) = |\rho_{Y,X}(\omega)|^2$ , where

$$\rho_{Y,X}(\omega) = \frac{f_{YX}(\omega)}{\sqrt{f_X(\omega)f_Y(\omega)}}$$





#### Review

Southern Oscillation ndex Example

Parametric Spectral Estimation

#### **Estimating Squared Coherence**

Recall that we estimated the spectral density using the smoothed squared modulus of the DFT of the series,

$$\bar{f}_X(\omega_j) = \frac{1}{L} \sum_{k=-(L-1)/2}^{(L-1)/2} |d_X(\omega_j)|^2$$
$$= \frac{1}{L} \sum_{k=-(L-1)/2}^{(L-1)/2} d_X(\omega_{j+k}) \overline{d_X(\omega_{j+k})}.$$



#### Review

Southern Oscillation ndex Example

Parametric Spectral Estimation

Lagged Regression Models

We can estimate the cross spectral density using the same sample estimate,

$$\bar{f}_{XY}(\omega_j) = \frac{1}{L} \sum_{k=-(L-1)/2}^{(L-1)/2} d_X(\omega_{j+k}) \overline{d_Y(\omega_{j+k})}$$

Also, we can estimate the squared coherence using these estimates,

$$\bar{\rho}_{Y,X}^2(\omega) = \frac{|\bar{f}_{YX}(\omega)|^2}{\bar{f}_X(\omega)\bar{f}_Y(\omega)}.$$

## Estimating Squared Coherence: SOI/Recruitment Example

1.0 0.8 squared coherency 9.0 9.0 M 1 Ŷ 0.2 0.0 2 0 3 4 5 6 1 frequency

Spectral Analysis of Time Series II



#### Review

Southern Oscillation ndex Example

Parametric Spectral Estimation

#### **Recall Lagged Regression Models**

$$Y_t = \sum_{j=-\infty}^{\infty} \beta_j X_{t-j} + V_t$$

The projection theorem tells us that the coefficients that minimize the mean squared error,

$$\mathbb{E}\left[\left(Y_t - \sum_{j=-\infty}^{\infty} \beta_j X_{t-j}\right)^2\right]$$

satisfy the orthogonality conditions

$$\mathbb{E}\left[\left(Y_t - \sum_{j=-\infty}^{\infty} \beta_j X_{t-j}\right) X_{t-k}\right] = 0, \quad k = 0, \pm 1, \pm 2, \cdots$$

Taking the expectations inside leads to the normal equations

$$\sum_{j=-\infty}^{\infty}\beta_j\gamma_X(k-j)=\gamma_{YX}(k),\quad k=0,\pm 1,\pm 2,\cdots$$





Review

Southern Oscillation ndex Example

Parametric Spectral Estimation

## Lagged Regression Models in the Frequency Domain

We could solve these equations for the  $\beta_j$  using the sample autocovariance and sample cross-covariance. But it is more convenient to use estimates of the spectra and cross-spectrum because convolution with  $\{\beta_j\}$  in the time domain is equivalent to multiplication by the Fourier transform of  $\{\beta_j\}$  in the frequency domain

We replace the autocovariance and cross-covariance with the inverse Fourier transforms of the spectral density and cross-spectral density in the orthogonality conditions, i.e., replace

$$\sum_{j=-\infty}^{\infty}\beta_j\gamma_X(k-j) \quad k=0,\pm 1,\pm 2,\cdots$$

by

$$\int_{-\frac{1}{2}}^{\frac{1}{2}} \sum_{j=-\infty}^{\infty} \beta_j e^{2\pi i \omega (k-j)} f_X(\omega) \, d\omega$$

Spectral Analysis of Time Series II



#### Review

Southern Oscillation Index Example

Parametric Spectral Estimation

#### Lagged Regression Models in the Frequency Domain

This gives, for  $k = 0, \pm 1, \pm 2, \cdots$ ,

$$\int_{-\frac{1}{2}}^{\frac{1}{2}} \sum_{j=-\infty}^{\infty} \beta_j e^{2\pi i \omega (k-j)} f_X(\omega) \, d\omega = \int_{-\frac{1}{2}}^{\frac{1}{2}} e^{2\pi i \omega k} f_{YX}(\omega) \, d\omega,$$
  
$$\Rightarrow \int_{-\frac{1}{2}}^{\frac{1}{2}} e^{2\pi i \omega k} B(\omega) f_X(\omega) \, d\omega = \int_{-\frac{1}{2}}^{\frac{1}{2}} e^{2\pi i \omega k} f_{YX}(\omega) \, d\omega,$$

where  $B(\omega) = \sum_{j=-\infty}^{\infty} e^{-2\pi i \omega j} \beta_j$  is the Fourier transform of the coefficient sequence  $\beta_j$ . Since the Fourier transform is unique, the orthogonality conditions are equivalent to

 $B(\omega)f_X(\omega) = f_{YX}(\omega).$ 

Then we may take

$$\hat{B}(\omega_k) = \frac{\hat{f}_{YX}(\omega_k)}{\hat{f}_X(\omega_k)}$$



#### Review

Southern Oscillation

Parametric Spectral Estimation

## Lagged Regression Models in the Frequency Domain We can write the mean squared error at the solution as follows

$$\mathbb{E}\left[\left(Y_t - \sum_{j=-\infty}^{\infty} \beta_j X_{t-j}\right) Y_t\right] = \gamma_Y(0) - \sum_{j=-\infty}^{\infty} \beta_j \gamma_{XY}(-j)$$

$$= \int_{-\frac{1}{2}}^{\frac{1}{2}} (f_Y(\omega) - B(\omega) f_{XY}(\omega)) \, d\omega$$

$$= \int_{-\frac{1}{2}}^{\frac{1}{2}} f_Y(\omega) \left(1 - \frac{f_{YX}(\omega) f_{XY}(\omega)}{f_X(\omega) f_Y(\omega)}\right) \, d\omega$$

$$= \int_{-\frac{1}{2}}^{\frac{1}{2}} f_Y(\omega) \left(1 - \frac{|f_{YX}(\omega)|^2}{f_X(\omega) f_Y(\omega)}\right) \, d\omega$$

$$= \int_{-\frac{1}{2}}^{\frac{1}{2}} f_Y(\omega) (1 - \rho_{Y,X}^2(\omega)) \, d\omega.$$

$$\Rightarrow \text{MSE} = \int_{-\frac{1}{2}}^{\frac{1}{2}} f_Y(\omega) (1 - \rho_{Y,X}^2(\omega)) \, d\omega$$

$$\Rightarrow f_V(\omega) = \left(1 - \rho_{Y,X}^2(\omega)\right) f_Y(\omega)$$

Spectral Analysis of Time Series II



#### Review

Southern Oscillation

Parametric Spectral Estimation

#### Lagged Regression Models in the Frequency Domain

Recall MSE = 
$$\int_{-\frac{1}{2}}^{\frac{1}{2}} f_Y(\omega) (1 - \rho_{Y,X}^2(\omega)) d\omega.$$

Thus,  $\rho_{Y,X}^2(\omega)$  indicates how the variance of  $\{Y_t\}$  at a frequency  $\omega$  is accounted for by  $\{X_t\}$ . Compare with the corresponding decomposition for random variables:

$$\mathbb{E}(Y - \beta X) = \sigma_Y^2 (1 - \rho_{Y,X}^2)$$

We can estimate the  $\beta_j$  in the frequency domain:

$$\hat{B}(\omega_k) = \frac{\hat{f}_{YX}(\omega_k)}{\hat{f}_X(\omega_k)}.$$

We can approximate the inverse Fourier transform of  $\hat{B}(\omega)$ ,

$$\hat{\beta}_j = \int_{-\frac{1}{2}}^{\frac{1}{2}} e^{2\pi i\omega j} \hat{B}(\omega) \, d\omega$$

via the sum,

$$\hat{\beta}_j = \frac{1}{M} \sum_{k=0}^{M-1} \hat{B}(\omega_j) e^{-2\pi i \omega_k j}.$$





Review

Southern Oscillation

Parametric Spectral Estimation

## Lagged Regression Models in the Frequency Domain

Here is the procedure:

- Estimate the spectral density f<sub>X</sub>(ω) and cross-spectral density f<sub>YX</sub>(ω)
- **2** Compute the transfer function  $\hat{B}(\omega)$ :

$$\hat{B}(\omega_k) = \frac{\hat{f}_{YX}(\omega_k)}{\hat{f}_X(\omega_k)}.$$

Take the inverse Fourier transform to obtain the impulse response function β<sub>j</sub>:

$$\hat{\beta}_j = \frac{1}{M} \sum_{k=0}^{M-1} \hat{B}(\omega_j) e^{-2\pi i \omega_k j}.$$





#### Review

Southern Oscillation Index Example

Parametric Spectral Estimation