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Agenda

1 Background

2 Forecasting, Filtering, and Smoothing

3 Multivariate Gaussian and Regression Lemmas
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Historical Background

The original model emerged in the context of space
tracking [Kalman, 1960, Kalman and Bucy, 1961]

The “state equation” defines the motion equations for the
position of a spacecraft with location xt

The data yt reflect information that can be observed from
a tracking device, such as velocity and azimuth

The main goal was to retrieve the underling state {xt}
based on observed data {yt}
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State-Space Model

State: Xt =MtXt−1 +Vt, Vt
i.i.d.
∼ WN(0,Qt), t = 1,2,⋯

Observation: Yt =HtXt +Wt, Wt
i.i.d.
∼ WN(0,Rt), t = 1,2,⋯

Xt ∈ Rp and Yt ∈ Rq are the state vector and the
observation vector at time t

Mt is the p × p transition matrix, and Ht is the q × p
observation matrix

Vt and Wt are the state and observation noises
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Additional Assumptions of State-Space Models

State equation:

Xt =MtXt−1 +Vt, t = 1,2⋯

Observation equation:

Yt =HtXt +Wt, t = 1,2,⋯

E(WsV
T
t ) = 0 for all s and t, that is, every observation

noise is uncorrelated with every state-transition noise

Assuming E(X0) = µ0, E(X0W
T
t ) = 0 and E(X0V

T
t ) = 0

for all t, that is, initial state vector are uncorrelated with
both observation and state transition noises
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Applications of State-Space Models

State-space models, defined through two seemingly
simple equations, constitute a rich class of processes that
have proven effective as models for time series

(S)ARIMA(X)

Hidden Markov Models (HMMs)

Vector Autoregression (VAR)

The Kalman recursions for state-space models provide
elegant solution for forecasting, filtering, and smoothing

To estimate Xt with Y1∶s = {Y1,Y2,⋯,Ys}:
When s < t⇒ forecasting

When s = t⇒ filtering

When s > t⇒smoothing

State-space models and Kalman recursions can be readily
adapted to handle time series with missing values
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AR(1) Process as a State-Space Model: I

State-transition equation

Xt =MtXt−1 +Vt

is reminiscent of a causal AR(1) model:

Yt = φYt−1 +Zt,

with {Zt} ∼ WN(0, σ2) and ∣φ∣ < 1

AR(1) can be expressed in state-space formulation by
setting

Xt = Yt; Mt = φ

Vt = Zt along with Qt
def
== E(VtV

T
t ) = E(Z2

t+1) = σ
2
Z

and by using a degenerate form of the observation
equation: Yt =HtXt +Wt in which Ht = 1 and Wt = 0 so
that Yt =Xt
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AR(1) Process as a State-Space Model: II

Need to define the initial state X0 in order to complete the
model:

A natural choice is

X0 =
∞
∑
j=1

φjZ1−j , for which Var(X0) =
σ2

1 − φ2

With this choice, the required conditions, namely,
E(X0W

T
t ) = 0 and E(X0V

T
t ) = 0 hold

Could also set X0 = Z0
σ√
1−φ2

to get a AR(1) process, but
using X0 = Z0 would lead to a valid state-space model that
is not a true AR(1) model
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AR(1) Process as a State-Space Model: III

AR(1) process with 0 < φ < 1 is known as “red noise”, red noise
is related to a 1st order stochastic differential equation,
rendering it a model for various geophysical processes:

Typically only observe red noise process of interest in
presence of observational noise (often taken to be white
noise)

Can modify this setup by changing observational noise
from Wt = 0 to Wt =Wt ∼ WN(0, σ2

W ), where Wt is
uncorrelated with Zt’s

The observation and state-transition equations become

Yt =Xt +Wt and Xt = φXt−1 +Zt
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ARMA(1,1) Process as a State-Space Model: I

Recall ARMA(1,1) process Yt − φYt−1 = Zt + θZt−1

Expressing ARMA(1,1) as φ(B)Yt = θ(B)Zt, note that one
can create Yt by taking causal AR(1) process
Xt = φ

−1(B)Zt and subjecting it to a θ(B) filter to obtain
output Yt = θ(B)Xt = θ(B)φ−1(B)Zt

Can express filtering of AR(1) process by

Yt = [1 θ] [
Xt

Xt−1
] ,

which matches up with observation equation

Yt =HtXt +Wt

if Yt = Yt, Ht = [1 θ], Xt = [
Xt

Xt−1
] and Wt = 0
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ARMA(1,1) Process as a State-Space Model: II
Given Xt = [Xt Xt−1]

T
, can express Xt = φXt−1 +Zt in

the 1st row of matrix equation

[
Xt

Xt−1
] = [

φ 0
1 0

] [
Xt−1
Xt−2

] + [
Zt
0
] ,

which matches up with state-transition equation

Xt =MtXt−1 +Vt

if Mt = [
φ 0
1 0

] and Vt = [
Zt
0
] with

Qt
def
== E(VtV

T
t ) = [

σ2 0
0 0

]

to complete the model, let

X0 = [
X0

X−1
] = [
∑
∞
j=1 φ

jZ1−j
∑
∞
j=1 φ

jZ−j
] ,

noting that X0 and Vt for t ≥ 1 are uncorrelated, as
required
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ARMA(1,1) Process as a State-Space Model: III

Since

E(X0X
T
0 ) = [

γ(0) γ(1)
γ(1) γ(0)

] =
σ2

1 − φ2
[
1 φ
φ 1

] ,

can alternatively stipulate

X0 =

⎡
⎢
⎢
⎢
⎢
⎣

1 φ√
1−φ2

0 φ√
1−φ2

⎤
⎥
⎥
⎥
⎥
⎦

[
Z0

Z−1
] ,

yielding

E(X0X
T
0 ) =

⎡
⎢
⎢
⎢
⎢
⎣

1 φ√
1−φ2

0 φ√
1−φ2

⎤
⎥
⎥
⎥
⎥
⎦

[
σ2 0
0 σ2]

⎡
⎢
⎢
⎢
⎣

1 0
φ√
1−φ2

1√
1−φ2

⎤
⎥
⎥
⎥
⎦

=
σ2

1 − φ2
[
1 φ
φ 1

]

as required
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The Linear Gaussian State-Space Model

State equation:
Xt =MtXt−1 +Vt,

where Vt
iid
∼ N(0,Qt) with X0 ∼ N(µ0,Σ0)

Observation equation:

Yt =HtXt +Wt,

where Wt
iid
∼ N(0,Rt)

Additional assumptions: X0, {Vt}, and {Wt} are
uncorrelated
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Forecasting, Filtering, and Smoothing

Goal: To estimate the underlying unobserved signal Xt, given
the data y1∶s = {y1,y2,⋯,ys}:

When s < t, the problem is called forecasting or prediction

When s = t, the problem is called filtering

When s > t, the problem is called smoothing

In addition to these estimates, we would also want to measure
their precision. The solution to these problems is accomplished
via the Kalman filter and Kalman smoother
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The Kalman Filter: General Results

Assume the filtering distribution at time t − 1 is

[Xt−1∣y1∶t−1] ∼ N (µat−1,Σ
a
t−1)

Forecast Step: Gives the forecast distribution at time t:

[Xt∣y1∶t−1] ∼ N (µft ,Σ
f
t ) ,

where µft =Mtµ
a
t−1, and Σft =MtΣ

a
t−1M

T
t +Qt.

Update Step: updates the forecast distribution using new
data yt

[Xt∣y1∶t] ∼ N (µat ,Σ
a
t ) ,

where µat = µ
f
t +Kt (yt −Htµ

f
t ), and Σat = (I −KtH

T
t )Σft ,

and
Kt = ΣftH

T
t (HtΣ

f
tH

T
t +Rt)

−1

is the Kalman gain matrix
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Local Level Model: Part I

Let’s begin with a particularly simple example of a state space
model: the local level model. We will develop the basic state
space techniques for this model.

Observation equation:

Yt =Xt +Wt, {Wt}
iid
∼ N(0, σ2

W )

State equation:

Xt =Xt−1 + Vt, {Vt}
iid
∼ N(0, σ2

V )

Assume E(X0) = µ0 and Var(X0) = σ
2
0 and X0 is

uncorrected with Wt’s and Vt’s
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Local Level Model: Part II

Since Xt =Xt−1 + Vt, state variable Xt is a random walk
starting from µ0 (intended to model a slowly varying trend)

Since Vt and Xt are uncorrelated,

E(Xt+1∣Xt) = E(Xt + Vt∣Xt) =Xt +E(Vt) =Xt;

i.e., if state variable is at a certain ‘level’ at time t, we can
expect no change in its level at time t + 1

When σ2
W > 0, trend is corrupted by noise, so ability to pick

out trend depends upon “signal to noise” ratio (SNR) σ2
V

σ2
W
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Local Level Model: Examples of Different SNR
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Four Problems in State-Space Models

Given observations {Yi}
t
i=1 of a local level process,

1 Filtering: what is best predictor of state Xt?

2 Forecasting: what is best predictor of state Xt+1?

3 Smoothing: what is best predictor of state Xs for s < t?

4 Estimation: what are best estimates of model parameters
σ2
W , σ

2
V , µ0, σ

2
0?

First, we will focus on filtering and forecasting problems, with
‘best‘ defined as the minimum mean square error (MSE).

To facilitate discussion, let’s assume that X0, Vt’s, and Wt are
normals, implying that Yt and the remaining Xt’s share this
property.
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Regression Lemma I

Suppose random vectors X and Y are jointly normal with
mean vector µ and covariance matrix Σ, to be denoted by

[
X
Y

] ∼ N(µ,Σ)

Can partition both µ and Σ:

[
X
Y

] ∼ N([
µX

µY
] , [

ΣXX ΣXY

ΣY X ΣY Y
]) ,

where µX (µY ) and ΣXX (ΣY Y ) are mean and
covariance matrix for X (Y ); ΣXY is the cross-covariance
matrix between X and Y
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Regression Lemma II

Conditional distribution of X given Y = y is multivariate
normal with mean vector

µX ∣y = µX +ΣXY Σ−1
Y Y (y −µY )

and covariance matrix

ΣX ∣y = ΣXX −ΣXY Σ−1
Y Y ΣTXY

Best (under MSE) predictor of X given Y is

E(X ∣Y ) = µX ∣Y = µX +ΣXY Σ−1
Y Y (Y −µY )
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Regression Lemma III

Recall that, if random vector U has covariance matrix ΣU ,
then covariance matrix for AU is AΣUA

T

⇒ covariance matrix of c +A(U − µU) is also AΣUA
T

Covariance matrix for

E(X ∣Y ) = µX ∣Y = µX +ΣXXΣ−1
Y Y (Y −µY )

is thus

ΣXY Σ−1
Y Y ΣY Y Σ−1

Y Y ΣTXY = ΣXY Σ−1
Y Y ΣTXY

Note: it is not the same as ΣX ∣y = ΣXX −ΣXY Σ−1
Y Y ΣTXY
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Regression Lemma IV

Consider prediction error U associated with best linear
predictor of X:

U =X −E(X ∣Y )

Since E [E (X ∣Y )] = µX ⇒ E(U) = 0

Covariance matrix for U is given by

E(UUT
) =E ([X −E(X ∣Y )] [X −E(X ∣Y )]

T
)

=E(XXT
) +E[E(X ∣Y )E(X ∣Y )

T
]

−E[XE(X ∣Y )
T
] −E[E(X ∣Y )XT

]

=ΣXX −ΣXY Σ−1
Y Y ΣTXY ,

which is equal to ΣX ∣y, the conditional covariance matrix
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Regression Corollary

Specialize now to case where X has just one element, say, X

Corollary: conditional distribution of X given Y = y is
normal with mean

µX +ΣTXY Σ−1
Y Y (y −µY )

and conditional variance

ΣX ∣y = σ2
X −ΣTXY Σ−1

Y Y ΣXY ,

where σ2
X = Var(X) and ΣXY is a column vector

containing covariance between X and Y

Since conditional variance is same as MSE for X, will refer
to ΣX ∣y as MSE
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Aside – Revisiting Time Series Prediction: I

Suppose {Xt} is zero mean stationary process with ACF γ(h)

Set X to Xn+1 and put X1,⋯,Xn into Y

Corollary says best linear predictor X̂n+1 of Xn+1 given
X1,⋯,Xn is

X̂n+1 = ΣTXY Σ−1
Y Y Y = γTn Γ−1n Y

def
== φTnY ,

where

1 γn = [γ(1), γ(2),⋯, γ(n)]T = ΣXY

2 (i, j)th entry of matrix Γn = ΣY Y is γ(i − j)

3 φT
n

def
== γT

n Γ−1n and hence φn = Γ−1n γn
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Aside – Revisiting Time Series Prediction: II

Recall that MSE for X̂n+1 is

vn = Var(Xn+1) −φTnγn
= σ2

X − γ
T
n Γ−1n γn

= σ2
X −ΣTXY Σ−1

Y Y ΣXY

= ΣX ∣y

This is a special case of regression corollary
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