State-Space Models II

Review

Forecasting, Filtering, and Smoothing

Estimating the State-Space Model Parameters

Lecture 15

State-Space Models II

Reading: SS17 Chapter 6.2-6.4, Chapter 6.12; BD Chapter 9.4-9.7

MATH 8090 Time Series Analysis Week 15

> Whitney Huang Clemson University

Agenda

State-Space Models II

Review

Forecasting, Filtering, and Smoothing

Estimating the State-Space Model Parameters

Porecasting, Filtering, and Smoothing

State-Space Model

Review

Forecasting, Filtering, and Smoothing

Estimating the State-Space Model Parameters

State: $X_t = M_t X_{t-1} + V_t$, $V_t \stackrel{i.i.d.}{\sim} WN(\mathbf{0}, Q_t)$, $t = 1, 2, \cdots$ Observation: $Y_t = H_t X_t + W_t$, $W_t \stackrel{i.i.d.}{\sim} WN(\mathbf{0}, R_t)$, $t = 1, 2, \cdots$

- X_t ∈ ℝ^p and Y_t ∈ ℝ^q are the state vector and the observation vector at time t
- *M_t* is the *p* × *p* transition matrix, and *H_t* is the *q* × *p* observation matrix
- V_t and W_t are the state and observation noises

Forecasting, Filtering, and Smoothing

Goal: To estimate the underlying unobserved signal X_t , given the data $Y_{1:s} = y_{1:s} = \{y_1, y_2, \cdots, y_s\}$:

- When s < t, the problem is called forecasting or prediction
- When *s* = *t*, the problem is called filtering
- When *s* > *t*, the problem is called smoothing

In addition to these estimates, we would also want to measure their precision. The solution to these problems is accomplished via the Kalman filter and Kalman smoother State-Space Models II

Review

Forecasting, Filtering, and Smoothing

The Kalman Filter: General Results

Assume the filtering distribution at time t - 1 is

$$[\boldsymbol{X}_{t-1}|\boldsymbol{Y}_{1:t-1}] \sim \mathrm{N}(\boldsymbol{\mu}_{t-1}^{a}, \boldsymbol{\Sigma}_{t-1}^{a})$$

• Forecast Step: Gives the forecast distribution at time t:

$$[\boldsymbol{X}_t | \boldsymbol{Y}_{1:t-1}] \sim \mathrm{N}\left(\boldsymbol{\mu}_t^f, \boldsymbol{\Sigma}_t^f\right),$$

where
$$\mu_t^f = M_t \mu_{t-1}^a$$
, and $\Sigma_t^f = M_t \Sigma_{t-1}^a M_t^T + Q_t$.

Update Step: updates the forecast distribution using new data Y_t

$$[\boldsymbol{X}_t|\boldsymbol{Y}_{1:t}] \sim \mathrm{N}\left(\boldsymbol{\mu}_t^a, \boldsymbol{\Sigma}_t^a\right),$$

where $\boldsymbol{\mu}_{t}^{a} = \boldsymbol{\mu}_{t}^{f} + K_{t} \left(\boldsymbol{Y}_{t} - H_{t} \boldsymbol{\mu}_{t}^{f} \right)$, and $\boldsymbol{\Sigma}_{t}^{a} = \left(I - K_{t} H_{t}^{T} \right) \boldsymbol{\Sigma}_{t}^{f}$, and

$$K_t = \Sigma_t^f H_t^T \left(H_t \Sigma_t^f H_t^T + R_t \right)^{-1}$$

is the Kalman gain matrix

Review

Forecasting, Filtering, and Smoothing

Filtering for Local Level Model: I

Let's begin with a particularly simple example of a state space model: the local level model

Local level model:

 $Y_t = X_t + W_t, \quad \{W_t\} \sim \mathcal{N}(0, \sigma_W^2)$ $X_t = X_{t-1} + V_t, \quad \{V_t\} \sim \mathcal{N}(0, \sigma_V^2)$

and X_0 is a R.V. that

- is uncorrelated with W_t's and V_t's
- has $E(X_0) = \mu_0$ and $Var(X_0) = \sigma_0^2$
- Filtering problem is to predict unknown state X_t based on data up to time t, i.e., $Y_{1:t} = (y_1, \dots, y_t)^T$

Review

Forecasting, Filtering, and Smoothing

Filtering for Local Level Model: II

Best linear predictor of X_t given $Y_{1:t}$ is

$$\mu_t^a \stackrel{\text{def}}{=} \mathrm{E}(X_t | \boldsymbol{Y}_{1:t}) = \mu_t + \Sigma_{t,t}^T \Sigma_{Y,t}^{-1} (\boldsymbol{Y}_{1:t} - \boldsymbol{\mu}_{1:t}),$$

where

• $\mu_t = E(X_t)$, $\mu_{1:t}$ is a vector containing, for $j = 1, \dots, t$,

$$\mu_j \stackrel{\text{def}}{=} \mathcal{E}(X_j) = \mathcal{E}(X_j + W_j) = \mathcal{E}(Y_j)$$

- Vector $\Sigma_{t,t}$ contains covarinces between X_t and $Y_{1:t}$
- (*i*, *j*)th element of matrix Σ_{Y,t} is covariance between Y_i and Y_j
- Note: $E(\mu_t^a) = E[E(X_t | Y_{1:t})] = E(X_t) = \mu_t$

• With $\sigma_t^2 \stackrel{\text{def}}{=} \operatorname{Var}(X_t)$, MSE for predictor is

$$\mathbf{E}[(X_t - \mu_t^a)^2] = \sigma_t^2 - \Sigma_{t,t}^T \Sigma_{Y,t}^{-1} \Sigma_{t,t} \stackrel{\text{def}}{=} \Sigma_t^a$$

State-Space Models II

Review

Forecasting, Filtering, and Smoothing

Forecasting for Local Level Model: I

Forecasting: estimate X_{t+1} given $Y_{1:t}$

Best linear predictor of X_{t+1} given Y_{1:t} is

$$\mu_{t+1}^{f} \stackrel{\text{def}}{=} \mathrm{E}(X_{t+1} | \mathbf{Y}_{1:t}) = \mu_{t+1} + \Sigma_{t+1,t}^{T} \Sigma_{Y,t}^{-1} (\mathbf{Y}_{1:t} - \boldsymbol{\mu}_{1:t}),$$

where vector $\Sigma_{t+1,t}$ has covaraince between X_{t+1} and $Y_{1:t}$

• Note:
$$E(\mu_{t+1}^f) = E[E(X_{t+1}|Y_{1:t})] = E(X_{t+1}) = \mu_{t+1}$$

MSE for predictor is

$$\mathbf{E}[(X_{t+1} - \mu_{t+1}^f)^2] = \sigma_{t+1}^2 - \Sigma_{t+1,t}^T \Sigma_{Y,t}^{-1} \Sigma_{t+1,t} \stackrel{\text{def}}{=} \Sigma_{t+1}^f$$

Review

Forecasting, Filtering, and Smoothing

Forecasting for Local Level Model: II

Let's also consider best linear predictor of Y_{t+1} given Y_{1:t}:

$$Y_{t+1}^{t} \stackrel{\text{def}}{=} E(Y_{t+1}|Y_{1:t}) = \mu_{Y,t+1} + \tilde{\Sigma}_{t+1,t}^{T} \Sigma_{Y,t}^{-1} (Y_{1:t} - \mu_{Y,1:t}),$$

where the vector $\tilde{\Sigma}_{t+1,t}$ has covarainces between Y_{t+1} and $\pmb{Y}_{1:t}$

• However, note that, for $j = 1, \dots, t$

$$Cov(Y_{t+1}, Y_j) = Cov(X_{t+1} + W_{t+1}, Y_j) = Cov(X_{t+1}, Y_j)$$

• Thus $\tilde{\Sigma}_{t+1,t} = \Sigma_{t+1,t}$, yielding

$$Y_{t+1}^{t} = \mu_{Y,t+1} + \Sigma_{t+1,t}^{T} \Sigma_{Y,t}^{-1} (\boldsymbol{y}_{1:t} - \boldsymbol{\mu}_{Y,1:t}) = \mu_{t+1}^{f}$$

 \Rightarrow difference between Y_{t+1} and X_{t+1} is W_{t+1} , therefore they have the same estimator, but their MSEs differ:

$$\mathbb{E}\left[(Y_{t+1} - Y_{t+1}^{f})^{2}\right] = \Sigma_{t+1}^{f} + \sigma_{W}^{2}$$

Review

Forecasting, Filtering, and Smoothing

Filtering for Local Level Model: III

• To implement filtering, i.e., compute μ_t^a , need to determine:

$$\mathbf{D} \ \mu_j = \mathbf{E}(X_j), \ j = 1, \cdots, t$$

(

- 2 Elements of $\Sigma_{t,t}$, i.e., covaraince between X_t and $Y_{1:t}$
- Solution Elements of $\Sigma_{Y,t}$, i.e., covariances between Y_j and Y_k , $1 \le j \le k \le t$
- To compute Σ_t^a, i.e., MSE for μ_t^a, need σ_t² = Var(X_t) in addition to 2 and 3 above
- Since $X_t = X_{t-1} + V_t$ and $Y_t = X_t + W_t$, telescoping yields $X_j = X_0 + \sum_{l=1}^j V_l$ and $Y_j = X_0 + \sum_{l=1}^j V_l + W_j$, $j = 1, \dots, t$

State-Space Models II

Review

Forecasting, Filtering, and Smoothing

Filtering for Local Level Model: IV

Using

$$X_j = X_0 + \sum_{l=1}^{j} V_l$$
 and $Y_j = X_0 + \sum_{l=1}^{j} + W_j$, $j = 1, \dots, t$,

get $\mu_j = \operatorname{E}[X_j] = \operatorname{E}[X_0] = \mu_0$ and (assuming $j \le k \le t$)

$$Cov(X_{t}, Y_{j}) = Cov\left(X_{0} + \sum_{l=1}^{t} V_{l}, X_{0} + \sum_{l=1}^{j} V_{l} + W_{j}\right)$$

= $\sigma_{0}^{2} + j\sigma_{V}^{2}$
$$Cov(Y_{j}, Y_{k}) = Cov\left(X_{0} + \sum_{l=1}^{j} V_{l} + W_{j}, X_{1} + \sum_{l=1}^{k} V_{l} + W_{k}\right)$$

= $\sigma_{0}^{2} + j\sigma_{V}^{2} + \delta_{jk}\sigma_{W}^{2}$,

where $\delta_{jk} = 1$ if j = k and $\delta_{jk} = 0$ if $j \neq k$

Review

Forecasting, Filtering, and Smoothing

Filtering for Local Level Model: V

Using

$$X_t = X_0 + \sum_{l=1}^t V_l,$$

get

$$\sigma_t^2 = \operatorname{Vor}(X_t) = \sigma_0^2 + t\sigma_V^2$$

- Now we have all the pieces needed to form μ^a_t and its MSE Σ^a_t
- Note: similar argument leads to pieces needed to form forecast μ_{t+1}^f and its MSE Σ_{t+1}^f

Review

Forecasting, Filtering, and Smoothing

Kalman Recursions for Filtering/Forecasting: I

While straightforward conceptually, forming

$$\mu_t^a = \mu_t + \Sigma_{t,t}^T \Sigma_{Y,t}^{-1} (\boldsymbol{Y}_{1:t} - \boldsymbol{\mu}_{1:t})$$

and

$$\mu_{t+1}^{f} = \mu_{t+1} + \Sigma_{t+1,t}^{T} \Sigma_{Y,t}^{-1} (\boldsymbol{Y}_{1:t} - \boldsymbol{\mu}_{1:t})$$

State-Space Models II

Review

Forecasting, Filtering, and Smoothing

Estimating the State-Space Model Parameters

via these equations requires inversion of matrix $\Sigma_{Y,t}$ whose dimension $t \times t$ becomes problematic as t gets large \bigcirc \Rightarrow

The celebrated Kalman recursions give a recipe that avoids explicit matrix inversion

• Idea: at time t - 1, we have 4 quantities of interest: fitted value μ_{t-1}^a , and forecast μ_t^f and their associated MSEs Σ_{t-1}^a and Σ_t^f

• Note:
$$\mu_{t-1}^a = \mu_t^f$$
 for local level model (but not others)

Kalman Recursions for Filtering/Forecasting: II

- At time t, new observation Y_t becomes available
- Kalman recursion takes μ_t^f , Σ_t^f and Y_t and yields
 - fitted values μ_t^a and forecast μ_{t+1}^f
 - associated MSEs Σ_t^a and Σ_{t+1}^f
- There are six steps in the Kalman recursion:
 - steps 1 and 2 are preparatory
 - steps 3 and 4 yield μ_t^a and Σ_t^a (filtering)
 - (a) steps 5 and 6 yield μ_{t+1}^{f} and Σ_{t+1}^{f} (forecasting)

Review

Forecasting, Filtering, and Smoothing

Kalman Recursions for Filtering/Forecasting: III

1. Compute innovation:

$$U_t = Y_t - Y_t^{t-1} = Y_t - \mu_t^f$$

2. Compute MSE for Y_t^{t-1} :

$$\Sigma_t^f + \sigma_W^2 \stackrel{\text{def}}{=} F_t$$

3. Compute new filtered value:

$$\mu_t^a = \mu_t^f + K_t U_t,$$

where $K_t \stackrel{\text{def}}{=} \Sigma_t^f / F_t$ is the so-called Kalman gain

4. Compute MSE for new filtered value:

$$\Sigma_t^a = \Sigma_t^f (1 - K_t)$$

State-Space Models II

Review

Forecasting, Filtering, and Smoothing

Kalman Recursions for Filtering/Forecasting: IV

5. Compute new forecast:

$$\mu_{t+1}^f = \mu_t^f + K_t U_t = \mu_t^a$$

6. Compute MSE for new forecast:

$$\Sigma_{t+1}^f = \Sigma_t (1 - K_t) + \sigma_V^2 = \Sigma_t^a + \sigma_V^2$$

Recursions are carried out for $t = 0, \dots, n$ with inputs $E[X_0] = \mu_0$, $Var(X_0) = \sigma_0^2$ and $Y'_t s$

Review

Forecasting, Filtering, and Smoothing

Kalman Recursions for Filtering/Forecasting: V

To prove validity of steps 3 and 4, need to show that $\mu_t^f + K_t U_t$ is equal to μ_t^a , and $\Sigma_t^f (1 - K_t)$ is equal to Σ_t^a

• Key fact: X_t conditioned on both $U_t = Y_t - Y_t^{t-1}$ and $Y_{1:t-1}$ is the same as X_t conditioned on $Y_{1:t-1}$ becasue

$$Cov(X_t, U_t | \mathbf{Y}_{1:t-1}) = Cov(X_t, Y_t - Y_t^{t-1} | \mathbf{Y}_{1:t-1})$$

= Cov(X_t, X_t + W_t | \mathbf{Y}_{1:t-1}) = Var(X_t | \mathbf{Y}_{1:t-1})
= \Sigma_t^f

We have

$$\mu_t^a = \mu_t^f + \frac{\Sigma_t^f}{F_t} U_t$$
, and $\Sigma_t^a = \Sigma_t^f - \frac{\left(\Sigma_t^f\right)^2}{F_t}$

since $K_t \stackrel{\text{def}}{=} \frac{\Sigma_t^f}{F_t}$, we get required

$$\mu_t^a = \mu_t^f + K_t U_t$$
 and $\Sigma_t^a = \Sigma_t^f (1 - K_t)$

State-Space Models II

Review

Forecasting, Filtering, and Smoothing

Simulated Example: Local Level Model with SNR = 2

Setup:
$$\mu_0 = 0$$
, $\sigma_0^2 = 1 = \sigma_V^2$, $\sigma_W^2 = 0.5$

Time series Y_t , states X_t , and forecasts μ_t^f

State-Space Models II

Review

Forecasting, Filtering, and Smoothing

Simulated Data from Local Level Model with SNR = 2

States X_t , forecasts μ_t^f , and 95% CIs based on Σ_t^f

Review

Forecasting, Filtering, and Smoothing

Kalman Recursions for Time Series with Missing Values: I

One of the strengths of state-space formulation is the capability to handle time series with missing values. Suppose Y_1, \dots, Y_t and Y_{t+3} are observed, but not Y_{t+1} and Y_{t+2} :

 use modified recursion (i.e., skip the calculation of the innovation when data is missing)

• use
$$\mu_{t+1}^f \stackrel{\text{def}}{=} X_{t+1}^t$$
 and $\Sigma_{t+1}^f \stackrel{\text{def}}{=} \Sigma_{t+1}^t$ for X_{t+2}^t and Σ_{t+2}^t

• use
$$X_{t+2}^t$$
 and Σ_{t+2}^t for X_{t+3}^t and Σ_{t+3}^t

• take
$$X_{t+3}^t$$
, Σ_{t+3}^t , and Y_{t+3} into usual recursion to obtain $\mu_{t+3}^a = X_{t+3}^{t+3}$ and $\Sigma_{t+3}^a = \Sigma_{t+3}^{t+3}$ and $\mu_{t+4}^f = X_{t+4}^{t+3}$ and $\Sigma_{t+4}^f = \Sigma_{t+4}^{t+3}$

need to interpret "given t + 3" as conditioning on everything available at time t + 3, i.e., Y₁,..., Y_t and Y_{t+3} State-Space Models II

Review

Forecasting, Filtering, and Smoothing

Example: Nile River Annual Minima Series

State-Space Models II

Nile River Annual Minima Series with Missing Values Imputed

State-Space Models II

Nile River Annual Minima Series Forecasts with 95 % CI

State-Space Models II

Review

Forecasting, Filtering, and Smoothing

Kalman Recursions for Smoothing: I

Given time series $Y_1, \cdots, Y_n,$ Kalman filter recursions give us μ^a_t = X^t_t for t = $1, \cdots, n$

Regression lemma says solution to smoothing problem is

$$\mu_t^s \stackrel{\text{def}}{=} \mathrm{E}[X_t | \mathbf{Y}_{1:n}] = \mu_t + \Sigma_{t,n}^T \Sigma_{Y,n}^{-1} (\mathbf{Y}_{1:n} - \boldsymbol{\mu}_{1:n})$$

• MSE for predictor, i.e.,
$$\mathbf{E}\left[\left(X_t - \mu_t^s\right)^2\right]$$
, is

$$\Sigma_t - \Sigma_{t,n}^T \Sigma_{Y,n}^{-1} \Sigma_{t,n} \stackrel{\text{def}}{=} \Sigma_t^s,$$

where $\Sigma_t \stackrel{\text{def}}{=} \operatorname{Var}[X_t]$

State-Space Models II

Review

Forecasting, Filtering, and Smoothing

Kalman Recursions for Smoothing: II

Using innovation U_t , innovation variance F_t , Kalman gains K_t , forecasts $\mu_t^f \stackrel{\text{def}}{=} X_t^{t-1}$ and associated MSEs $\Sigma_t^f \stackrel{\text{def}}{=} \Sigma_t^{t-1}, t = 1, \cdots, n$ computed by Kalman filter recursions, Kalman smoother recursions allow efficient computation of $\mu_t^s, t = 1, \cdots, n$

The first two steps yield desired predictor μ_t^s

1. Manipulate innovations: starting with $r_n = 0$, recursively form

$$r_{t-1} = \frac{U_t}{F_t} + (1 - K_t)r_t, \quad t = n, \dots, 1$$

2. Combine manipulated innovations and forecasts:

$$\mu_t^s = X_t^t + \Sigma_t^{t-1} r_{t-1}, \quad t = 1, \cdots, n$$

Review

Forecasting, Filtering, and Smoothing

Kalman Recursions for Smoothing: III

Next two steps yield MSE for predictor X_t^n :

3. Manipulate innovation variances: starting with $N_n = 0$, recursively form

$$N_{t-1} = \frac{1}{F_t} + (1 - K_t)^2 N_t, \quad t = n, \dots, 1$$

4. Combine manipulated innovation variances and forecast MSEs:

$$\Sigma_t^n = \Sigma_t^{t-1} - \left(\Sigma_t^{t-1}\right)^2 N_{t-1}, \quad t = 1, \cdots, n,$$

where Σ_t^n is the desired MSE

Review

Forecasting, Filtering, and Smoothing

Simulated Example: Local Level Model with SNR = 2

Time series Y_t , states X_t , and smooths μ_t^s

Review

Forecasting, Filtering, and Smoothing

Simulated Data from Local Level Model with SNR = 2

States X_t , smooths X_t^n , and 95% CIs based on Σ_t^s

Review

Forecasting, Filtering, and Smoothing

Estimating the State-Space Model Parameters

So far, we've assumed that the parameters $\theta = (\sigma_V^2, \sigma_W^2, \mu_0, \sigma_0^2)$ are known. In practice, we need to estimate from the data

This requires maximizing the marginal likelihood of the data y, having integrated the latent time series x out. This is given by:

$$f(\boldsymbol{y}|\sigma_V^2, \sigma_W^2, \mu_0, \sigma_0^2) = \int f(\boldsymbol{y}|\boldsymbol{x}, \sigma_W^2) f(\boldsymbol{x}|\mu_0, \sigma_0^2, \sigma_V^2)$$

Maximizing over an integral can be difficult ©

State-Space Models II

Review

Forecasting, Filtering, and Smoothing

Direct Maximum Marginal Likelihood

Fortunately, our normal distribution facts tell us that the marginal distribution of \boldsymbol{y} is

 $\boldsymbol{y} \sim \mathrm{N}(\mathrm{E}(\boldsymbol{x}), \mathrm{Var}(\boldsymbol{x}) + \sigma_W^2 I_n).$

However, the direct evaluation of the marginal likelihood can be challenge due to $n \times n$ matrix inversions

Alternative, we use the innovations $U_t = Y_t - Y_t^{t-1}$ to compute the likelihood:

$$\ell(\boldsymbol{\theta}) \propto f(u_1) \prod_{t=2}^n f(u_t | \boldsymbol{y}_{1:t-1}).$$

We can do the following iteratively:

- Pick an initial guess $\hat{\theta}^0$ and run the Kalman filter to get a set of innovations
- Maximizing θ (e.g., via Newton–Raphson) with u to obtain new estimate of θ

Review

Forecasting, Filtering, and Smoothing

Expectation-Maximization (EM) Maximum Marginal Likelihood

Another way to compute maximum likelihood estimate $\hat{\theta}$ is to use the expectation-maximization (EM) algorithm [Dempster, Laird, and Rubin, 1977]

- Initialize by choosing starting value θ⁰, and compute the incomplete likelihood
- Perform the E-step to obtained X_t^n , Σ_t^n
- Perform M-step to update the estimate θ using the complete likelihood
- Recompute the incomplete likelihood
- Repeat until convergence, i.e., $|\hat{\theta}^N \hat{\theta}^{N-1}| < \epsilon$

State-Space Models II

Review

Forecasting, Filtering, and Smoothing

Bayesian Estimation

Markov Chain Monte Carlo (MCMC) methods, such as the Gibbs sampler [Gelfand and Smith, 1990] or the Metropolis-Hastings algorithm [Metropolis et al., 1953; Hastings, 1970], are commonly used for Bayesian inference in state space models

Gibbs Sampler for State Space Models

) Draw
$$oldsymbol{ heta}$$
 from $p(oldsymbol{ heta}|oldsymbol{x}_{0:n},oldsymbol{y_{1:n}})$, where

$$p(\boldsymbol{\theta}|\boldsymbol{x}_{0:n}, \boldsymbol{y}_{1:n}) \propto \pi(\boldsymbol{\theta}) p(x_0|\boldsymbol{\theta}) \prod_{t=1}^n p(x_t|x_{t-1}, \boldsymbol{\theta}) p(y_t|x_t, \boldsymbol{\theta})$$

) Draw
$$oldsymbol{x}_{0:n}$$
 from $p(oldsymbol{x}_{0:n}|oldsymbol{y}_{1:n},oldsymbol{ heta}),$ where

 $p(\boldsymbol{x}_{0:n}|\boldsymbol{y}_{1:n},\boldsymbol{\theta}) = p(x_n|\boldsymbol{y}_{1:n},\boldsymbol{\theta})p(x_{n-1}|x_n,\boldsymbol{y}_{1:n-1},\boldsymbol{\theta})\cdots p(x_0|x_1,\boldsymbol{\theta})$

Use forward-filtering, backward sampling (FFBS) algorithm to sequentially simulating the individual states backward

Review

Forecasting, Filtering, and Smoothing