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State-Space Model

State: X, = M, X, 1 +V;, V, "% WN(0,Q,), t=1,2,-
Observation: Y; = H; X, + W, W, "“* WN(0,R,), t=1,2,
@ X, €RP and Y; € R? are the state vector and the

observation vector at time ¢

@ M, is the p x p transition matrix, and H; is the g x p
observation matrix

@ V, and W, are the state and observation noises
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Forecasting, Filtering, and Smoothing

Review

Goal: To estimate the underlying unobserved signal X, given
the data Yi.s = y1.s = {y1,¥2, -, Ys }:

@ When s < t, the problem is called forecasting or prediction

@ When s =t, the problem is called filtering

@ When s > t, the problem is called smoothing

In addition to these estimates, we would also want to measure
their precision. The solution to these problems is accomplished
via the Kalman filter and Kalman smoother
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The Kalman Filter: General Results

Assume the filtering distribution at time ¢t — 1 is

Review

[ X 1]Yiea] ~ N (g, B¢ 1)

@ Forecast Step: Gives the forecast distribution at time t:
[Xt|}/1:t—1] ~N (“{7 th) )

where p/ = Mypd |, and = = M 20 MT +Q,.
o Update Step: updates the forecast distribution using new
data v;
[Xt|Y12t] ~N (u'tav E?) ’
where pu = i + K, (Yi - Hypf ), and 3¢ = (1- K, HT) 3,
and .
K=/l (Hs{H] + R,)
is the Kalman gain matrix
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Filtering for Local Level Model: |

Let’s begin with a particularly simple example of a state space
m0d€| the |00a| |eve| mOde| Forecasting, Filtering.

and Smoothing

@ Local level model:

Y =X+ Wy, {W;}~N(0,0%)
Xi=Xe1 + Vi, {Vi} ~N(0,0%)

and X, is a R.V. that

o is uncorrelated with W;’s and V;’s

e has E(Xy) = po and Var(Xo) = og

@ Filtering problem is to predict unknown state X; based on
data up to time ¢, i.e., Y1.; = (y1, ~~~,yt)T
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Best linear predictor of X; given Y7 is M
a def _
E(Xt|lf1 t) ,ut + 2 Ey}t(},l:t - ul:t); Fo:‘je;aslmgj Filtering.
an moothing

where
o uy = E(Xy), w1 is @ vector containing, for j =1,---,¢,

1 L E(X,) = B(X; + W;) = B(Y;)

@ Vector ¥, ; contains covarinces between X; and Y.

@ (i,7)th element of matrix Xy, is covariance between Y;
andY;

o Note: E(u¢) = E[E(X,[Yi4)] = E(X,) = 1

o With 02 % Var(X,), MSE for predictor is
BI(X: —p)*] = 0f - 57,57, B < 8¢
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Forecasting for Local Level Model: |

Forecasting: estimate X,,; given Y7

Forecasting, Filtering.
and Smoothing

@ Best linear predictor of X;,; given Yy is

def _
N{ﬂ - E(Xt+1|Y1:t) =M1 t EtT+1,tEY,1t(Y1:t - let)a

where vector ¥;,; ;+ has covaraince between X;.; and Y7
@ Note: E(Mtf+1) = E[E(X1|Y1:)] = E(Xt41) = phea

@ MSE for predictor is

def
E[(Xi1 - Ht+1) 1= Ut+1 Et+1tZYtZt+1t =5/

t+1
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@ Let’s also consider best linear predictor of Y;,; given Y7, :

def Forecasting, Filtering

t SvA -1
Y = E(Yt+1|lf1:t) = Hy+1 t Et+17t2y7t(yv1;t - /,l,yyl;t), and Smoothing

where the vector ¥, ; has covarainces between Y;,; and
1fl:t

@ However, note that, for j =1, ¢
Cov(Yis1,Y;) = Cov( X1 + Wii,Y)) = Cov(Xei1,Y))
© Thus X441+ = Y4414, yielding

Ytt+1 = Myt+1 + E;t]:rl,tz:;%t(yli — Py,1t) = Mtf+1

= difference between Y;,; and X, is W;,1, therefore
they have the same estimator, but their MSEs differ:
t+1

E [(Yt+1 - Yt{1)2] =%f ‘H’%/
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Filtering for Local Level Model: IlI

@ To implement filtering, i.e., compute ¢, need to determine:

Forecasting, Filtering.
and Smoothing

0 Hi = E(XJ)7 ] = 17"'7t
@ Elements of ¥, 4, i.e., covaraince between X; and Y.,
© Elements of Xy, i.e., covariances between Y; and Y},

l<j<k<t

@ To compute ¢, i.e., MSE for u, need o2 = Var(X;) in
addition to 2 and 3 above

@ Since X; = X;_; +V; and Y; = X, + W, telescoping yields
Xj :X0+ZL1‘/[ and }/j :X0+Z?:1‘/l +Wj,j =1,
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Filtering for Local Level Model: IV

@ Using
Forecasting, Filtering.
and Smoothing

J J
X;=Xo+Y,ViandY; = Xo+ Yy +W;, j=1,1t,
=1 =1

get i; = E[X;] =E[Xo] = o and (assuming j < k < t)

t J
COV(Xt,}/}‘) = Cov (XO + Z‘/I,Xo + ZW +W])
=1 =1

=05+ jov
J k
Cov(Y},Y,) = Cov (Xo + Y Vi W, X1+ ). Vi+ Wk)
=1 =1

R 2
=05+ joy + 00y,

where §;, =1ifj=kand d;, =0if j =k
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USIng Forecasting, Filtering
t and Smoothing
Xt = XO + Z ‘/2,
=1

get
o} =Var(X,) = of +toy,

@ Now we have all the pieces needed to form p§ and its
MSE x¢

@ Note: similar argument leads to pieces needed to form
forecast 1/, , and its MSE %/,
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Kalman Recursions for Filtering/Forecasting: |
While straightforward conceptually, forming
a _ + ZT 271 (Y _ ) Forecasting, Filtering
,ut = Ut t,t=Y,t 1:t ll/ltt and Smoothing

and

Ntf+1 = M1 + Ezll,txff}t(yl:t - M1:t)
via these equations requires inversion of matrix Xy, whose
dimension ¢ x ¢ becomes problematic as ¢ gets large @ =

The celebrated Kalman recursions give a recipe that
avoids explicit matrix inversion

o ldea: at time ¢ — 1, we have 4 quantities of interest: fitted
value ;¢ ;, and forecast 1 and their associated MSEs
¢ and &/

@ Note: »¢ | = i/ for local level model (but not others)
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Kalman Recursions for Filtering/Forecasting: Il

@ Attime t, new observation Y; becomes available

Forecasting, Filtering.
and Smoothing

@ Kalman recursion takes x/, &/ and Y; and yields

o fitted values p and forecast /.,

o associated MSEs ¢ and ¥/,

@ There are six steps in the Kalman recursion:

@ steps 1 and 2 are preparatory
@ steps 3 and 4 yield . and ¥ (filtering)

@ steps 5 and 6 yield 11/, and %/, (forecasting)
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1. Compute innovation:
t—1 .
Ur=Yi=¥, ™ =Yi-pf ot e

2. Compute MSE for Y,/

def
>l +ol € F,

3. Compute new filtered value:
1§ = + KUy,

where K, % %/ /F, is the so-called Kalman gain

4. Compute MSE for new filtered value:
2o =%l (1-K,)
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Kalman Recursions for Filtering/Forecasting: IV

5. Compute new forecast:

ploy =l + KU = g

6. Compute MSE for new forecast:

»f

L =%(1-K) + 0% =57 + 0%

State-Space Models Il

CLEMS@N

UNITVERSITY

Forecasting, Filtering
and Smoothing

Recursions are carried out for ¢ = 0, -, n with inputs E[ X,] = o,

Var(Xy) = og and Y/s
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Kalman Recursions for Filtering/Forecasting: V

To prove validity of steps 3 and 4, need to show that M{ + KU,
is equal to n¢, and Zf(l - K;) is equal to 3¢

@ Key fact: X, conditioned on both U; = Y; - V;!"* and Y3,
is the same as X; conditioned on Y7.;_1 becasue

Cov(Xy, Uyl Yii-1) = Cov(Xy, Yy = V7 Y11)

= Cov(Xy, Xy + Wy Y1:-1) = Var(Xy|Y1:4-1)

=xnf
We have
2
f
2/ oy (%)
I _/J’t +FUtsandEt :Ef F
since K, & % we get required

pd =l + KUy and ©¢ = 27 (1- K)
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Forecasting, Filtering.
and Smoothing
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Setup: 119=0,03 =1=0}, 05, =05

Time series Y;, states X, and forecasts /J{ Forecasiing. Fitering

10

- 57
>
T
g
<

o

5

T T T T
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Simulated Data from Local Level Model with SNR = 2

States X, forecasts 1/, and 95% Cls based on %/

Forecasting, Filtering,
and Smoothing

X X1 and 95% Cls
o
|

o
1
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One of the strengths of state-space formulation is the capability T
to handle time series with missing values. Suppose Y7, -, Y;
and Y;,5 are observed, but not Y;,; and Y;.o: e e

@ use modified recursion (i.e., skip the calculation of the
innovation when data is missing)

def def
o use ul, <= X!, and %/ <= %!, for X}, and X,

o use X/, and Xt , for X} 5 and X¢,5

o take X/ 5, 3,4, and Y;,3 into usual recursion to obtain
- yt+3 _ yt+3 I xt+3
niys = Xif5 and Xf, 3 = X7y and py, 4 = X;7; and

f o _ st+3
Et+4_2t+4

@ need to interpret “given ¢ + 3” as conditioning on everything
available at time ¢ + 3, i.e., Y7,--,Y; and Y;,3
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Example: Nile River Annual Minima Series

Nile River Minima Series, 622 to 1921

Forecasting, Filtering

and Smoothing
16

14

i

10

Yt

600 800 1000 1200 1400 1600 1800
Year

15.21



Nile River Annual Minima Series with Missing Values Imputed

y and forecast

Nile River Series and Forecasts

14

600 800 1000 1200 1400 1600 1800
Year
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Forecasting, Filtering.
and Smoothing
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Forecasts for Nile River Series and 95% Cls

Forecasting, Filtering.

and Smoothing
16

y, forecast and 95% Cls

600 800 1000 1200 1400 1600 1800
Year
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Given time series Y7, -+, Y,,, Kalman filter recursions give us
a t Forecasting, Filtering.
My = Xt fOI’ t= 1, N and Smoothing

@ Regression lemma says solution to smoothing problem is

@ MSE for predictor, i.e., E [(Xt - uf)2], is

def

T -1 s
Yy - E7&,1123’,71215777« - Et’

where ¥, % Var[ X¢]
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Kalman Recursions for Smoothing: Il

Using innovation U,, innovation variance F;, Kalman gains K,
def « 4_ .
forecasts y{ < X! and associated MSEs Forecasiing. Fitering
f _ . . :
Etf df -1t =1,---,n computed by Kalman filter recursions,
Kalman smoother recursions allow efficient computation of
S 4=1, .
:uta 9 ,n

The first two steps yield desired predictor 1}

1. Manipulate innovations: starting with r,, = 0, recursively
form U
Tt-1 =J+(1—Kt)’l"t, t:n,~~-,1
Fi

2. Combine manipulated innovations and forecasts:

s t t—1
pr =X, +3 e, t=1,-m
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Kalman Recursions for Smoothing: lli

Next two steps yield MSE for predictor X}*: T

and Smoothing

3. Manipulate innovation variances: starting with v,, = 0,
recursively form

1
Nii=—+(1-K)?N,, t=mn,-,1
F

4. Combine manipulated innovation variances and
forecast MSEs:

2?:2%71_(2];’1)2]\%_1, tzl?"'anv

where X} is the desired MSE
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Simulated Example: Local Level Model with SNR = 2

Time series V;, states X, and smooths y}

-5
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Forecasting, Filtering
and Smoothing

15.27



State-Space Models Il

CLEMS@N

UNITVERSITY

Simulated Data from Local Level Model with SNR = 2

States X, smooths X}*, and 95% Cls based on %

Forecasting, Filtering,
and Smoothing

10

d 95% Cls
o
|

A
Xu Xgn @N

-5
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Estimating the State-Space Model Parameters

So far, we've assumed that the parameters 6 = (0¥, 07, 110, 75 )
are known. In practice, we need to estimate from the data

Estimating the
State-Space Model
Parameters

This requires maximizing the marginal likelihood of the data v,
having integrated the latent time series « out. This is given by:

[l ot 0,08 = [ F(yle,of)f (@lio, o8, %)

[ Maximizing over an integral can be difficult ® ]
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Fortunately, our normal distribution facts tell us that the .
marginal distribution of y is
y ~ N(E(w)7va'r(w) + O—IQ/VITL)' Estimating the

State-Space Model
Parameters

However, the direct evaluation of the marginal likelihood can
be challenge due to n x n matrix inversions

Alternative, we use the innovations U, = Y; - Y;*"! to compute
the likelihood:
£(0) o< f(uy) Hf(ut|y1:t—1)~
t=2

We can do the following iteratively:

@ Pick an initial guess 8° and run the Kalman filter to get a
set of innovations

@ Maximizing 0 (e.g., via Newton—Raphson) with u to obtain
new estimate of 6
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Another way to compute maximum likelihood estimate 6 is to
use the expectation-maximization (EM) algorithm [Dempster, Estimating the

State-Space Model

Laird, and Rubin, 1977] Parameters

@ Initialize by choosing starting value 8°, and compute the
incomplete likelihood

@ Perform the E-step to obtained X}, ¥}

@ Perform M-step to update the estimate 0 using the
complete likelihood

@ Recompute the incomplete likelihood

@ Repeat until convergence, i.e., |8~ -0V < ¢
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Bayesian Estimation

Markov Chain Monte Carlo (MCMC) methods, such as the

Gibbs sampler [Gelfand and Smith, 1990] or the Metropolis-Hastings

algorithm [Metropolis et al., 1953; Hastings, 1970], are commonly used

for Bayesian inference in state space models Estimating the el

Parameters

Gibbs Sampler for State Space Models
@ Draw 0 from p(0|xo:n, Yy1:n ), Where

P(0)Z0:0n, Y1:n) o< w(0)p(20|0) Hp(l‘t|$t—1’ 0)p(yilre, 0)
t=1
Q Draw zy., from p(zo.n|y1:n, 0), Where
p(mO:n|y1:na 9) = p('rn|y1:n7 0)p($n_1|$n, Yi:n-1, 9)"'p($0|$1, 9)

Use forward-filtering, backward sampling (FFBS) algorithm
to sequentially simulating the individual states backward
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