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Agenda

1 Review

2 Forecasting, Filtering, and Smoothing

3 Estimating the State-Space Model Parameters
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15.3

State-Space Model

State: Xt =MtXt−1 +Vt, Vt
i.i.d.∼ WN(0,Qt), t = 1,2,⋯

Observation: Yt =HtXt +Wt, Wt
i.i.d.∼ WN(0,Rt), t = 1,2,⋯

Xt ∈ Rp and Yt ∈ Rq are the state vector and the
observation vector at time t

Mt is the p × p transition matrix, and Ht is the q × p
observation matrix

Vt and Wt are the state and observation noises
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Forecasting, Filtering, and Smoothing

Goal: To estimate the underlying unobserved signal Xt, given
the data Y1∶s = y1∶s = {y1,y2,⋯,ys}:

When s < t, the problem is called forecasting or prediction

When s = t, the problem is called filtering

When s > t, the problem is called smoothing

In addition to these estimates, we would also want to measure
their precision. The solution to these problems is accomplished
via the Kalman filter and Kalman smoother
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The Kalman Filter: General Results

Assume the filtering distribution at time t − 1 is

[Xt−1∣Y1∶t−1] ∼ N (µa
t−1,Σ

a
t−1)

Forecast Step: Gives the forecast distribution at time t:

[Xt∣Y1∶t−1] ∼ N (µf
t ,Σ

f
t ) ,

where µf
t =Mtµ

a
t−1, and Σf

t =MtΣ
a
t−1M

T
t +Qt.

Update Step: updates the forecast distribution using new
data Yt

[Xt∣Y1∶t] ∼ N (µa
t ,Σ

a
t ) ,

where µa
t = µf

t +Kt (Yt −Htµ
f
t ), and Σa

t = (I −KtH
T
t )Σf

t ,
and

Kt = Σf
tH

T
t (HtΣ

f
tH

T
t +Rt)

−1

is the Kalman gain matrix
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Filtering for Local Level Model: I

Let’s begin with a particularly simple example of a state space
model: the local level model

Local level model:

Yt =Xt +Wt, {Wt} ∼ N(0, σ2
W )

Xt =Xt−1 + Vt, {Vt} ∼ N(0, σ2
V )

and X0 is a R.V. that

is uncorrelated with Wt’s and Vt’s

has E(X0) = µ0 and Var(X0) = σ
2
0

Filtering problem is to predict unknown state Xt based on
data up to time t, i.e., Y1∶t = (y1,⋯, yt)T
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Filtering for Local Level Model: II
Best linear predictor of Xt given Y1∶t is

µa
t

def== E(Xt∣Y1∶t) = µt +ΣT
t,tΣ

−1
Y,t(Y1∶t −µ1∶t),

where
µt = E(Xt), µ1∶t is a vector containing, for j = 1,⋯, t,

µj
def== E(Xj) = E(Xj +Wj) = E(Yj)

Vector Σt,t contains covarinces between Xt and Y1∶t

(i, j)th element of matrix ΣY,t is covariance between Yi
and Yj

Note: E(µa
t ) = E[E(Xt∣Y1∶t)] = E(Xt) = µt

With σ2
t

def== Var(Xt), MSE for predictor is

E[(Xt − µa
t )2] = σ2

t −ΣT
t,tΣ

−1
Y,tΣt,t

def== Σa
t
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Forecasting for Local Level Model: I

Forecasting: estimate Xt+1 given Y1∶t

Best linear predictor of Xt+1 given Y1∶t is

µf
t+1

def== E(Xt+1∣Y1∶t) = µt+1 +ΣT
t+1,tΣ

−1
Y,t(Y1∶t −µ1∶t),

where vector Σt+1,t has covaraince between Xt+1 and Y1∶t

Note: E(µf
t+1) = E[E(Xt+1∣Y1∶t)] = E(Xt+1) = µt+1

MSE for predictor is

E[(Xt+1 − µf
t+1)2] = σ2

t+1 −ΣT
t+1,tΣ

−1
Y,tΣt+1,t

def== Σf
t+1
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15.9

Forecasting for Local Level Model: II

Let’s also consider best linear predictor of Yt+1 given Y1∶t ∶

Y t
t+1

def= E(Yt+1∣Y1∶t) = µY,t+1 + Σ̃T
t+1,tΣ

−1
Y,t(Y1∶t −µY,1∶t),

where the vector Σ̃t+1,t has covarainces between Yt+1 and
Y1∶t

However, note that, for j = 1,⋯, t

Cov(Yt+1, Yj) = Cov(Xt+1 +Wt+1, Yj) = Cov(Xt+1, Yj)

Thus Σ̃t+1,t = Σt+1,t, yielding

Y t
t+1 = µY,t+1 +ΣT

t+1,tΣ
−1
Y,t(y1∶t −µY,1∶t) = µf

t+1

⇒ difference between Yt+1 and Xt+1 is Wt+1, therefore
they have the same estimator, but their MSEs differ:

E [(Yt+1 − Y f
t+1)2] = Σf

t+1+σ2
W
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Filtering for Local Level Model: III

To implement filtering, i.e., compute µa
t , need to determine:

1 µj = E(Xj), j = 1,⋯, t

2 Elements of Σt,t, i.e., covaraince between Xt and Y1∶t

3 Elements of ΣY,t, i.e., covariances between Yj and Yk,
1 ≤ j ≤ k ≤ t

To compute Σa
t , i.e., MSE for µa

t , need σ2
t = Var(Xt) in

addition to 2 and 3 above

Since Xt =Xt−1 + Vt and Yt =Xt +Wt, telescoping yields
Xj =X0 +∑j

l=1 Vl and Yj =X0 +∑j
l=1 Vl +Wj , j = 1,⋯, t
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Filtering for Local Level Model: IV

Using

Xj =X0 +
j

∑
l=1

Vl and Yj =X0 +
j

∑
l=1

+Wj , j = 1,⋯, t,

get µj = E[Xj] = E[X0] = µ0 and (assuming j ≤ k ≤ t)

Cov(Xt, Yj) = Cov(X0 +
t

∑
l=1

Vl,X0 +
j

∑
l=1

Vl +Wj)

= σ2
0 + jσ2

V

Cov(Yj , Yk) = Cov(X0 +
j

∑
l=1

Vl +Wj ,X1 +
k

∑
l=1

Vl +Wk)

= σ2
0 + jσ2

V + δjkσ2
W ,

where δjk = 1 if j = k and δjk = 0 if j ≠ k
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Filtering for Local Level Model: V

Using

Xt =X0 +
t

∑
l=1

Vl,

get
σ2
t = Var(Xt) = σ2

0 + tσ2
V

Now we have all the pieces needed to form µa
t and its

MSE Σa
t

Note: similar argument leads to pieces needed to form
forecast µf

t+1 and its MSE Σf
t+1
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Kalman Recursions for Filtering/Forecasting: I

While straightforward conceptually, forming

µa
t = µt +ΣT

t,tΣ
−1
Y,t(Y1∶t −µ1∶t)

and
µf
t+1 = µt+1 +ΣT

t+1,tΣ
−1
Y,t(Y1∶t −µ1∶t)

via these equations requires inversion of matrix ΣY,t whose
dimension t × t becomes problematic as t gets large /⇒

The celebrated Kalman recursions give a recipe that
avoids explicit matrix inversion

Idea: at time t − 1, we have 4 quantities of interest: fitted
value µa

t−1, and forecast µf
t and their associated MSEs

Σa
t−1 and Σf

t

Note: µa
t−1 = µ

f
t for local level model (but not others)
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Kalman Recursions for Filtering/Forecasting: II

At time t, new observation Yt becomes available

Kalman recursion takes µf
t , Σf

t and Yt and yields

fitted values µa
t and forecast µf

t+1

associated MSEs Σa
t and Σf

t+1

There are six steps in the Kalman recursion:

1 steps 1 and 2 are preparatory

2 steps 3 and 4 yield µa
t and Σa

t (filtering)

3 steps 5 and 6 yield µf
t+1 and Σf

t+1 (forecasting)
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Kalman Recursions for Filtering/Forecasting: III

1. Compute innovation:

Ut = Yt − Y t−1
t = Yt − µf

t

2. Compute MSE for Y t−1
t :

Σf
t + σ2

W
def== Ft

3. Compute new filtered value:

µa
t = µf

t +KtUt,

where Kt
def== Σf

t /Ft is the so-called Kalman gain

4. Compute MSE for new filtered value:

Σa
t = Σf

t (1 −Kt)
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Kalman Recursions for Filtering/Forecasting: IV

5. Compute new forecast:

µf
t+1 = µ

f
t +KtUt = µa

t

6. Compute MSE for new forecast:

Σf
t+1 = Σt(1 −Kt) + σ2

V = Σa
t + σ2

V

Recursions are carried out for t = 0,⋯, n with inputs E[X0] = µ0,
Var(X0) = σ2

0 and Y ′

t s
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Kalman Recursions for Filtering/Forecasting: V

To prove validity of steps 3 and 4, need to show that µf
t +KtUt

is equal to µa
t , and Σf

t (1 −Kt) is equal to Σa
t

Key fact: Xt conditioned on both Ut = Yt − Y t−1
t and Y1∶t−1

is the same as Xt conditioned on Y1∶t−1 becasue

Cov(Xt, Ut∣Y1∶t−1) = Cov(Xt, Yt − Y t−1
t ∣Y1∶t−1)

= Cov(Xt,Xt +Wt∣Y1∶t−1) = Var(Xt∣Y1∶t−1)
= Σf

t

We have

µa
t = µf

t +
Σf

t

Ft
Ut, and Σa

t = Σf
t −

(Σf
t )

2

Ft

since Kt
def== Σf

t

Ft
, we get required

µa
t = µf

t +KtUt and Σa
t = Σf

t (1 −Kt)
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Simulated Example: Local Level Model with SNR = 2

Setup: µ0 = 0, σ2
0 = 1 = σ2

V , σ2
W = 0.5

Time series Yt, states Xt, and forecasts µf
t
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Simulated Data from Local Level Model with SNR = 2

States Xt, forecasts µf
t , and 95% CIs based on Σf

t
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Kalman Recursions for Time Series with Missing Values: I

One of the strengths of state-space formulation is the capability
to handle time series with missing values. Suppose Y1,⋯, Yt
and Yt+3 are observed, but not Yt+1 and Yt+2:

use modified recursion (i.e., skip the calculation of the
innovation when data is missing)

use µf
t+1

def
== Xt

t+1 and Σf
t+1

def
== Σt

t+1 for Xt
t+2 and Σt

t+2

use Xt
t+2 and Σt

t+2 for Xt
t+3 and Σt

t+3

take Xt
t+3, Σt

t+3, and Yt+3 into usual recursion to obtain
µa
t+3 =Xt+3

t+3 and Σa
t+3 = Σt+3

t+3 and µf
t+4 =Xt+3

t+4 and
Σf

t+4 = Σt+3
t+4

need to interpret “given t + 3” as conditioning on everything
available at time t + 3, i.e., Y1,⋯, Yt and Yt+3
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Example: Nile River Annual Minima Series

600 800 1000 1200 1400 1600 1800
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16

Nile River Minima Series, 622 to 1921

Year

y t
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Nile River Annual Minima Series with Missing Values Imputed

600 800 1000 1200 1400 1600 1800
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Nile River Series and Forecasts

Year
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Nile River Annual Minima Series Forecasts with 95 % CI

600 800 1000 1200 1400 1600 1800
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Forecasts for Nile River Series and 95% CIs
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Kalman Recursions for Smoothing: I

Given time series Y1,⋯, Yn, Kalman filter recursions give us
µa
t =Xt

t for t = 1,⋯, n

Regression lemma says solution to smoothing problem is

µs
t

def== E[Xt∣Y1∶n] = µt +ΣT
t,nΣ−1

Y,n(Y1∶n −µ1∶n)

MSE for predictor, i.e., E [(Xt − µs
t)

2], is

Σt −ΣT
t,nΣ−1

Y,nΣt,n
def== Σs

t ,

where Σt
def== Var[Xt]
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Kalman Recursions for Smoothing: II

Using innovation Ut, innovation variance Ft, Kalman gains Kt,
forecasts µf

t
def== Xt−1

t and associated MSEs
Σf

t
def== Σt−1

t , t = 1,⋯, n computed by Kalman filter recursions,
Kalman smoother recursions allow efficient computation of
µs
t , t = 1,⋯, n

The first two steps yield desired predictor µs
t

1. Manipulate innovations: starting with rn = 0, recursively
form

rt−1 =
Ut

Ft
+ (1 −Kt)rt, t = n,⋯,1

2. Combine manipulated innovations and forecasts:

µs
t =Xt

t +Σt−1
t rt−1, t = 1,⋯, n
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Kalman Recursions for Smoothing: III

Next two steps yield MSE for predictor Xn
t :

3. Manipulate innovation variances: starting with Nn = 0,
recursively form

Nt−1 =
1

Ft
+ (1 −Kt)2Nt, t = n,⋯,1

4. Combine manipulated innovation variances and
forecast MSEs:

Σn
t = Σt−1

t − (Σt−1
t )2

Nt−1, t = 1,⋯, n,

where Σn
t is the desired MSE
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Simulated Example: Local Level Model with SNR = 2

Time series Yt, states Xt, and smooths µs
t
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Simulated Data from Local Level Model with SNR = 2

States Xt, smooths Xn
t , and 95% CIs based on Σs

t
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Estimating the State-Space Model Parameters

So far, we’ve assumed that the parameters θ = (σ2
V , σ

2
W , µ0, σ

2
0)

are known. In practice, we need to estimate from the data

This requires maximizing the marginal likelihood of the data y,
having integrated the latent time series x out. This is given by:

f(y∣σ2
V , σ

2
W , µ0, σ

2
0) = ∫ f(y∣x, σ2

W )f(x∣µ0, σ
2
0 , σ

2
V )

Maximizing over an integral can be difficult /
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Direct Maximum Marginal Likelihood

Fortunately, our normal distribution facts tell us that the
marginal distribution of y is

y ∼ N(E(x),Var(x) + σ2
W In).

However, the direct evaluation of the marginal likelihood can
be challenge due to n × n matrix inversions

Alternative, we use the innovations Ut = Yt − Y t−1
t to compute

the likelihood:

`(θ)∝ f(u1)
n

∏
t=2

f(ut∣y1∶t−1).

We can do the following iteratively:

Pick an initial guess θ̂0 and run the Kalman filter to get a
set of innovations

Maximizing θ (e.g., via Newton–Raphson) with u to obtain
new estimate of θ
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Expectation-Maximization (EM) Maximum Marginal
Likelihood

Another way to compute maximum likelihood estimate θ̂ is to
use the expectation-maximization (EM) algorithm [Dempster,
Laird, and Rubin, 1977]

Initialize by choosing starting value θ0, and compute the
incomplete likelihood

Perform the E-step to obtained Xn
t , Σn

t

Perform M-step to update the estimate θ using the
complete likelihood

Recompute the incomplete likelihood

Repeat until convergence, i.e., ∣θ̂N − θ̂N−1∣ < ε
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Bayesian Estimation

Markov Chain Monte Carlo (MCMC) methods, such as the
Gibbs sampler [Gelfand and Smith, 1990] or the Metropolis-Hastings
algorithm [Metropolis et al., 1953; Hastings, 1970], are commonly used
for Bayesian inference in state space models

Gibbs Sampler for State Space Models

1 Draw θ from p(θ∣x0∶n,y1∶n), where

p(θ∣x0∶n,y1∶n)∝ π(θ)p(x0∣θ)
n

∏
t=1

p(xt∣xt−1,θ)p(yt∣xt,θ)

2 Draw x0∶n from p(x0∶n∣y1∶n,θ), where

p(x0∶n∣y1∶n,θ) = p(xn∣y1∶n,θ)p(xn−1∣xn,y1∶n−1,θ)⋯p(x0∣x1,θ)

Use forward-filtering, backward sampling (FFBS) algorithm
to sequentially simulating the individual states backward
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