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1 Review

2 Further Topics
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Time Domain Analysis vs Frequency Domain Analysis

Time Domain:

Stationarity, ACVF, and ACF

Linear processes, causality, invertibility

ARMA models, estimation, forecasting

ARIMA, seasonal ARIMA models

Frequency Domain:

Spectral density, Periodogram

Nonparametric spectral density estimation

Parametric spectral density estimation

Lagged regression models
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Objectives of Time Series Analysis

Compact description of data

Forecasting

Control

Hypothesis testing

Simulation
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Time Series Modeling

First step: plot the time series

Look for trends, seasonal components, step changes,
outliers

Transform data so that residuals are (approximately)
stationary

Estimate and remove µt and st

Differencing

Nonlinear transformations (e.g., log,
√
⋅)

Fit a model to residuals
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Stationarity

{Yt} is strictly stationary if, for all k, t1,⋯, tk, y1,⋯, yk and h,

P(Yt1 ≤ y1,⋯, Ytk ≤ yk) = P(Yt1+h ≤ y1,⋯, Ytk+h ≤ yk).

i.e., shifting the time axis does nor affect the joint distribution

We consider second-order properties only:

{Yt} is stationary if its mean function and autocovariance
function satisfy

µt = E[Yt] = µ,

γ(s, t) = Cov(Ys, Yt) = γ(s − t).

Note: it implies constant variance as γ(t, t) = Var(Yt) = γ(0)
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ACF and Sample ACF

The autocorrelation function (ACF) is

ρ(h) =
γ(h)

γ(0)
= Cor(Yt+h, Yt)

For observations y1,⋯, yn of a time series, the sample mean is

ȳ =
1

n

n

∑
t=1
yt.

The sample autocovariance function (ACVF) is

γ̂(h) =
1

n

n−∣h∣
∑
t=1

(yt+∣h∣ − ȳ) (yt − ȳ) , for − n < h < n.

The sample autocorrelation function is

ρ̂(h) =
γ̂(h)

γ̂(0)
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Linear Processes

Linear process is an important class of stationary time series:

Yt = µ +
∞
∑
j=−∞

ψjZt−j ,

where {Zt} ∼ WN(0, σ2), and ∑∞j=−∞ ∣ψj ∣ <∞.

Example: ARMA(p, q)



Review and Further
Topics

Review

Further Topics

16.9

Causality and Inveribility

A linear porcess {Yt} is causal if there is a

ψ(B) = ψ0 + ψ1B + ψ2B
2
+⋯

with ∞
∑
j=0

∣ψj ∣ <∞

and
Yt = ψ(B)Zt.

A linear process {Yt} is invertible if there is a

π(B) = π0 + π1B + π2B
2
+⋯

with ∞
∑
j=0

∣πj ∣ <∞

and
Zt = π(B)Yt.
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Autoregressive Moving Average Models

An ARMA(p, q) process {Yt} is a stationary process that
satisfies

Yt − φ1Yt−1 −⋯ − φpYt−p = Zt + θ1Zt−1 +⋯ + θqZt−q,

where {Zt} ∼ WN(0, σ2). Also, φp, θq ≠ 0 and φ(z) and θ(z)
have no common factors

Properties:

A unique stationary solution exists if and only if

φ(z) = 1 − φ1z −⋯ − φpz
p
= 0⇒ ∣z∣ ≠ 1.

This ARMA(p, q) process is causal if and only if

φ(z) = 1 − φ1z −⋯ − φpz
p
= 0⇒ ∣z∣ > 1.

It is invertible if and only if

θ(z) = 1 + θ1z +⋯ + θqz
q
= 0⇒ ∣z∣ > 1.
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Linear Prediction
Given Y1, Y2,⋯, Yn, the best linear predictor
Y nn+h = α0 +∑

n
i=1 αiYi of Yn+h satisfies the prediction equations:

E[Yn+h − Y nn+h] = 0

E [(Yn+h − Y nn+h)Yi] = 0 for i = 1,⋯, n.

One-step-ahead linear prediction

Y nn+1 = φn1Yn + φn2Yn−1 +⋯ + φnnY1

Γnφn = γn, Pnn+1 = E(Yn+1 − Y nn+1)
2
= γ(0) − γTn Γ−1n γn,

with

Γn =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

γ(0) γ(1) ⋯ γ(n − 1)
γ(1) γ(0) ⋯ γ(n − 2)
⋮ ⋯ ⋱ ⋮

γ(n − 1) γ(n − 2) ⋯ γ(0)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where
φn = (φn1, φn2,⋯, φnn)

T ,

and
γn = (γ(1), γ(n),⋯, γ(n))

T
.
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Yule-Walker Estimation and Maximum Likelihood Estimation

Method of moments: choose parameters for which the
moments are equal to the empirical moments. One choose φ
such that γ = γ̂.

Yule-Walker equations for φ̂:
⎧⎪⎪
⎨
⎪⎪⎩

Γ̂pφ̂ = γ̂p,

σ̂2 = γ̂(0) − φ̂T γ̂p.

Maximum Likelihood Estimation: Suppose that Y1,⋯, Yn is
drawn from a zero mean Gaussian ARMA(p, q) process. The
likelihood of parameters φ ∈ Rp and θ ∈ Rq, σ2 ∈ R+ is defined as
the joint density of Y = (Y1, Y2,⋯, Yn):

L(φ, θ, σ2
) =

1

(2π)n/2∣Γn∣1/2
exp(−

1

2
Y TΓ−1n Y ) .

The maximum likelihood estimator (MLE) of φ, θ, σ2 maximizes
this quantity.
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ARIMA(p, d, q) and Seasonal ARIMA Models

For p, d, q ≥ 0, we say that a time series Yt is an ARIMA(p, d, q)
process if

Xt =▽
dYt = (1 −B)

dYt

is ARMA(p, q). We can write

φ(B)(1 −B)
dYt = θ(B)Zt.

For p, q,P,Q ≥ 0, s, d,D > 0, we say a time series {Yt} is a
(multiplicative) seasonal ARIMA model
(ARIMA(p, d, q) × (P,D,Q)s) if

Φ(Bs)φ(B)▽
D
s ▽

dYt = Θ(Bs)θ(B)Zt,

where the seasonal difference operator of order D is defined by

▽
D
s Yt = (1 −Bs)DYt.
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Spectral Density and Spectral Distribution Function

If {Yt} has ∑∞h=−∞ ∣γ(h)∣ <∞, then we define its spectral
density as

f(ω) =
∞
∑
h=−∞

γ(h)e−2πiωh

for −∞ < ω <∞. We have

γ(h) = ∫

1
2

− 1
2

e2πiωhf(ω)dω = ∫

1
2

− 1
2

e2πiωh dF (ω),

where dF (ω) = f(ω)dω.
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Periodogram and Its Asymptotic Properties

The periodogram is defined as

I(ωj) = ∣d(ωj)∣
2

=
1

n
∣
n

∑
t=1
e−2πiωjtyt∣

2

=
1

n
[(

n

∑
t=1

cos(2πtωj)yt)
2
+ (

n

∑
t=1

sin(2πtωj)yt)
2
]

Under general conditions, we have

2I(ωj)

f(ωj)

d
→ χ2

2.

Thus,

E(I(ωj))→ f(ω)

Var(I(ωj))→ f(ω)2
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Smoothed Periodogram

If f(ω) is approximately constant in the band [ωj−m, ωj+m],
then the average of the periodogram over the band

f̄(ωj) =
1

2m + 1

m

∑
k=−m

I(ωj+k)

will be unbiased. This is the averaged periodogram

Smoothed periodogram:

f̂(ωj) =
m

∑
k=−m

Wm(k)I(ωj+k).

Wm(k) is the spectral window function satisfies
Wm(k) ≥ 0,Wm(k) =Wm(−k) and ∑mk=−mWm(k) = 1. The
averaged periodogram is a special case of smoothed
periodogram with

Wm(k) =
1

2m + 1
if −m ≤ k ≤m.
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Parametric Spectral Density Estimation

Given data y1, y2,⋯, yn,

Estimate the AR parameters φ1,⋯, φp, σ2

Use the estimates φ̂1,⋯, φ̂p, σ̂2 to compute the estimated
spectral density:

f̂(ω) =
σ̂2

∣φ̂(e−2πiω)∣
2

For large n,

Var(f̂(ω)) ≈
2p

n
f2(ω)
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Coherence

Cross-spectrum:

fXY (ω) =
∞
∑
h=−∞

γXY (h)e−2πiωh.

Cross-covariance:

γXY = ∫

1
2

− 1
2

fXY (ω)e2πiωh dω.

Squared coherence:

ρ2Y,X(ω) =
∣fY X(ω)∣

2

fX(ω)fY (ω)
.
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Lagged Regression Models in the Frequency Domain

Lagged Regression Model:

Yt =
∞
∑
j=−∞

βjXt−j + Vt.

One can compute the Fourier transform of the series {βj} in
terms of the cross-spectral density and the spectral density:

B(ω)fX(ω) = fY X(ω).

The resulting mean squared error:

MSE = ∫

1
2

− 1
2

fY (ω) (1 − ρ2Y,X(ω)) dω.

Thus, ρ2Y,X(ω) indicates how the component of the variance of
{Yt} at a frequency ω is accounted for by {Xt}
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GARCH Models for Volatility

It is a common practice to model log returns, {rt = log( yt
yt−1

)},
rather than daily stock prices, {yt}, when analyzing financial
time series.

Jan 04
2007

Jul 01
2008

Jan 04
2010

Jul 01
2011

Jan 02
2013

Jul 01
2014

Jan 04
2016

Jul 03
2017

Jan 02
2019

Jul 01
2020

return 2007−01−04 / 2021−10−15

−0.15

−0.10

−0.05

 0.00

 0.05

 0.10

−0.15

−0.10

−0.05

 0.00

 0.05

 0.10

Generalized Autoregressive Conditional Heteroskedasticity
(GARCH) is commonly used to model the dynamics of
fluctuations in log returns to capture volatility clustering.

rt = µt + at, at = σtεt, σ2
t = α0 +

m

∑
i=1
αia

2
t−i +

s

∑
j=1

βjσ
2
t−j
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Extreme Value Analysis: Two Main Approaches
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Block Maxima:

Mn =
n

max
t=1

Xt ∼ GEV(µ,σ, ξ)

Fit generalized extreme
value (GEV) distribution to
block maxima

Threshold Exceedances:

X ∣X > u ∼ GPD(σu, ξ)

Fit generalized Pareto
distribution (GPD) to
exceedances over a high
threshold
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State-Space Model

State: Xt =MtXt−1 +Vt, Vt
i.i.d.
∼ WN(0,Qt), t = 1,2,⋯

Observation: Yt =HtXt +Wt, Wt
i.i.d.
∼ WN(0,Rt), t = 1,2,⋯

Xt ∈ Rp and Yt ∈ Rq are the state vector and the
observation vector at time t

Mt is the p × p transition matrix, and Ht is the q × p
observation matrix

Vt and Wt are the state and observation noises
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Forecasting, Filtering, and Smoothing

Goal: To estimate the underlying unobserved signal Xt, given
the data Y1∶s = y1∶s = {y1,y2,⋯,ys}:

When s < t, the problem is called forecasting or prediction

When s = t, the problem is called filtering

When s > t, the problem is called smoothing

In addition to these estimates, we would also want to measure
their precision. The solution to these problems is accomplished
via the Kalman filter and Kalman smoother



Review and Further
Topics

Review

Further Topics

16.24

The Kalman Filter: General Results

Assume the filtering distribution at time t − 1 is

[Xt−1∣Y1∶t−1] ∼ N (µat−1,Σ
a
t−1)

Forecast Step: Gives the forecast distribution at time t:

[Xt∣Y1∶t−1] ∼ N (µft ,Σ
f
t ) ,

where µft =Mtµ
a
t−1, and Σft =MtΣ

a
t−1M

T
t +Qt.

Update Step: updates the forecast distribution using new
data Yt

[Xt∣Y1∶t] ∼ N (µat ,Σ
a
t ) ,

where µat = µ
f
t +Kt (Yt −Htµ

f
t ), and Σat = (I −KtH

T
t )Σft ,

and
Kt = ΣftH

T
t (HtΣ

f
tH

T
t +Rt)

−1

is the Kalman gain matrix



Review and Further
Topics

Review

Further Topics

16.25

Multivariate Time Series Analysis

All the methods presented for univariate time series also
apply to multivariate processes

{Yt ∈ Rp}

The theory is a little more involved as we generalize to the
cross-covariance:

Cov(Ys,Yt) = C(s, t),

where C(⋅, ⋅) is the p × p matrix-valued cross-covariance
function (CCVF)
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Vector Autoregressive (VAR) Models

VAR(p) model:

Yt = µ +A1Yt−1 +⋯ +ApYt−p +Wt, t = 0,±1,±2,⋯,

where

Yt = (Y1t,⋯, Ypt)
T is a (p × 1) random vector

Ai are (p × p) coefficient matrices

µ = (µ1,⋯, µp)
T is the intercept vector

Wt = (W1t,⋯,Wpt)
T is a p-dimensional white noise, i.e.,

E[Wt] = 0, E[WtW
T
t ] = ΣW and E[WsW

T
t ] = 0 for s ≠ t.
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An Example of Identifiability Issue of VARMA

The following bivariate AR(1) and MA(1) models are identical:

VAR(1):

[
Y1t
Y2t

] = [
0 0
2 0

] [
Y1,t−1
Y2,t−1

] + [
W1t

W2t
]

VMA(1):

[
Y1t
Y2t

] = [
W1t

W2t
] − [

0 0
−2 0

] [
W1,t−1
W2,t−1

]

⇒ Y1t =W1t, Y2t = 2Y1,t−1 +W2,t = 2W1,t−1 +W2t

Such a exchangeable forms between AR and MA models
cannot occur in the univariate case [Tsay, 2000]
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Spatio-Temporal Data
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Long-Memory Processes

A stationary process {Yt} is called long-memory with
parameter d ∈ (0,0.5), if

C(h) = Cov(Yt, Yt+h) ∼ ch2d−1 (h→∞)

Long-memory processes are time series models in which
ACF decay slowly with increasing lags

Visual features of the data:

Relatively long periods of large and small values

Looking at short periods of time, there is evidence of trends
and seasonality. These disappear as the period length
increases
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Autoregressive Fractionally Integrated Moving Average
(ARFIMA) Model

When we extend d in ARIMA

φ(B)(1 −B)
dYt = θ(B)Zt.

to be real-valued we obtain the autoregressive fractionally
integrated moving average (ARFIMA) model:

This is an example of a long-memory process

The parameter d is called the long-memory parameter

The process {Yt} is non-stationary when d ≥ 1/2
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Example: Nile River Ninima
Nile river annual minimal water levels for the years 622 to
1281, measured at the Roda gauge near Cairo [Tousson,
1925, p.366-385]

Source: Craigmile’s short course in Spatio-temporal methods, Extreme value modeling and water resources summer school,
Universite Lyon 1, France, Jun 2016
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Bootstraps for Time Series

Bootstrap [Efron, 1979]: simulation-based methods for
frequentist inference.

Moving block bootstrap [Künsch, 1989]: data
{y1, y2,⋯, yn} is split into n − b + 1 overlapping blocks of
length b. Then from these n − b + 1 blocks, n/b blocks will
be drawn at random with replacement to form the
bootstrap observations

Not stationary by construction. Varying randomly b can
avoid this problem and it is known as the stationary
bootstrap [Politis and Romano, 1994]
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Bootstraps for Time Series: Some References

Davison, A.C. and Hinkley, D.V. (1997) Bootstrap Methods
and Their Application. Cambridge University Press

Künsch, H.R. (1989) The jackknife and the bootstrap for
general stationary observations. Annals of Statistics, 17,
1217-1241

Politis, D.N. and Romano, J.P. (1994) The stationary
bootstrap. Journal of the American Statistical Association,
89, 1303-1313
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Time-Frequency Analysis: A Motivation Example
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Time-Frequency Analysis: Spectrogram

A spectrogram is a visual representation of the spectrum of
frequencies of a signal as it varies with time
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Non-Gaussian Time Series Methods

Some selected references:

Regression models for time series analysis, Kedem and
Fokianos, 2002

Handbook of discrete-valued time series, edited by Davis,
Holan, Lund, Ravishanker, 2016

Bayesian Dynamic Generalized Linear Models,
Gamerman et. al, 2016

Count Time Series: A Methodological Review, Davis et.
al., 2021
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