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The Classical (Additive) Decomposition Model e aaanaty
@ The additive model for a time series {Y;} is pHlYERSITY

The Classical
Decomposition Model

Yi = i + se + e,
where
o u. is the trend component
o s is the seasonal component

o 7 is the random (noise) component with E(7;) =0

@ Standard procedure:

(1) Estimate/remove the trend and seasonal components

(2) Analyze the remainder, the residuals 7 = y: — it — 3¢

@ We will focus on (1) for this week
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Estimating Trend and

Mauna Loa Atmospheric CO, Concentration Revisited Seasonality

Monthly atmospheric concentrations of CO, at the Mauna Loa (] E)\SgeN
Observatory [Source: Keeling & Whorf, Scripps Institution of EE—

The Classical

Oceanography] Decomposition Model
SSSg = »
data(co2)
par(mar = c(3.8, 4, 0.8, 0.6))
plot(co2, las = 1, xlab = "", ylab = "")

mtext("Time (year)", side = 1, line = 2)
mtext(expression(paste("C0"[2], " Concentration (ppm)")), side = 2, line = 2.5)
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Estimating Trend for Nonseasonal Model o easonaity |
@ Assuming s; = 0 (i.e., there is no “seasonal” variation), we
have Trend Estimation
Yi = pg + e,
with E(n;) =0

@ Methods for estimating trends

o Least squares regression

e Smoothing

o Alternatively, one can remove trend by differencing time
series
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Trend Estimation: Linear Regression o easnatty
CLEMS@N
@ The additive nonseasonal time series model for {Y;} is
}/; = ,Ut + 77t7 Trend Estimation

where the trend is assumed to be a linear combination of
known covariate series {z;;}?_;

P
pt = Bo + Z Biwit-
=1
@ Here we want to estimate 3 = (3, 81, 3,)" from the
data {y, {fﬂit}f=1}tT=1

@ You're likely quite familiar with this formulation already =
Regression Analysis
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Estimating Trend and

Some Examples of Covariate Series {z;;} Seasonality

@ Simple linear regression model: CLEMS@N

UNITVERSITY

e = Bo + Bixe,

Trend Estimation

for example, the temperature trend at time ¢ could be a
constant (8y) plus a multiple (8;) of the carbon dioxide
level at time ¢ (x;)

@ Polynomial regression model:

p .
pe = Bo+ Y. Bit’
i1

@ Change point model:

| B if <+
He = B()‘l‘ﬁl |ft2t*
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Estimating Trend and

Parameter Estimation: Ordinary Least Squares Seasonality

CLEMS@®N

UNITVERSITY

o Like in the linear regression setting, we can estimate the
parameters via ordinary least squares (OLS)

Trend Estimation

@ Specifically, we minimize the following objective function:

T D
Cots = > (e = Bo— Y. 2wt Be)’.
=1 k=1

@ The estimates 8 = (8o, 1, 8,)" minimizing the above
objective function are called the OLS estimates of 8 =
they are easiest to express in matrix form
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The Model and Parameter Estimates in Matrix Form S

CLEMS@®N
@ Matrix representation: T
Y = Xﬁ +n, Trend Estimation
Y 1 ill iu im
whereY =| i [ X =f "2 7% >0 |, and
Yr
1 rT1 T2 t XTp
T
n=|:
nr

o Assuming X7 X is invertible, the OLS estimate of 3 can
be shown to be

B=(XTxX)'xTy,
and the 1m function in R calculates OLS estimates
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Lake Huron Example Revisited

Estimating Trend and

Seasonality
CLEMS@N
UNI1VERSITY
582
581 f\ Trend Estimation
580 /'
=
a
[
578 /
577
576
T I I T I
1880 1900 1920 1940 1960
Year

Let’'s assume there is a linear trend in time = we need to
estimate the intercept 5, and slope 3,



The r Output ES‘I"::;;?:J:;: and

CLEMS@N
Call:
Im(formula = LakeHuron ~ yr) Trend Estimation
Residuals:
Min 1Q Median 3Q Max
-2.50997 -0.72726 ©.00083 0.74402 2.53565

Coefficients:

Estimate Std. Error t value Pr(>Itl)
(Intercept) 625.554918 7.764293 80.568 < 2e-16 ***
yr -0.024201 0.004036 -5.996 3.55e-08 ***

Signif. codes: @ ‘***’ 0.001 ‘**’ 0.01 ‘** 9.05 ‘.’ 0.1 ¢’ 1

Residual standard error: 1.13 on 96 degrees of freedom
Multiple R-squared: 0.2725, Adjusted R-squared: 0.2649
F-statistic: 35.95 on 1 and 96 DF, p-value: 3.545e-08



Plot the (Estimated) Trend /i, = 5 + 31t

Depth (ft)

Estimating Trend and
Seasonality

CLEMS@N

UNITVERSITY

582

Trend Estimation
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T T T T T
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Year

B = —0.0242 (ft/yr) = there seems to be a decreasing trend



Plot the Residuals {7, = y; — 3o — 1t} Estimating Trend and

Seasonality
CLEMS@®N
UNI1VERSITY
2- Trend Estimation
1—
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I
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{n:} seems to exhibit some temporal dependence structure,

should we worry about the results we have (recall OLS makes
an i.i.d. assumption)?



Statistical Properties of the OLS Estimates with Correlated o easnatty
Errors CLEMS@N
@ Assume the components of X are not random, the OLS fEIVERSITY
estimates 3 are unbiased for 8
Proof:

Trend Estimation

@ Since {n;} is typically not an i.i.d. process (see the acf plot
below), statistical inferences regarding 3 will be invalid
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Smoothing or Local Averaging

In certain situations, we may want to relax the assumption on
the trend = “non-parametric” approach

Here, we break the time series up into “small” blocks (each
with 10 years of data) and average each block

582

581 —

580 —

579

Depth (ft)

578

577

576 —

Year

Doing this gives a very rough estimate of the trend. Can we do
better?

Estimating Trend and
Seasonality

UNITVERSITY

Trend Estimation



Moving Average Smoother

@ A moving average smoother estimates the trend at time ¢
by averaging the current observation and the ¢ nearest
observations from either side. That is

N 1
M= e 2 v

582
581 |
580 | —__

579 —

Depth (ft)

578

577
— MAQ=5
— MAq= 20

T T T T T

1880 1900 1920 1940 1960

576 -

Year

@ ¢ is the “smoothing” parameter, which controls the
smoothness of the estimated trend /i,

Estimating Trend and
Seasonality

CLEMS@®N
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Trend Estimation



Estimating Trend and

Exponential Smoothing Seasonality

CLEMS@®N

UNITVERSITY

@ Let a €[0,1] be some fixed constant, defined

Trend Estimation

NN I ¢ if t =1;
He = aYy+(1-a)p—r t=2,--T.

o Fort=2,---,T, we can rewrite [i; as

=2 A
N a(l-a)Y;+(1-a)"'y.
=0

= it is a one-sided moving average filter with exponentially
decreasing weights. One can alter « to control the
amounts of smoothing (see next slide for an example)



« is the Smoothing Parameter for Exponential Smoothing S
582
581 Trend Estimation
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The smaller the «, the smoother the resulting trend




Differencing Eaineing Tond ond
The final method we consider for removing trends is PRI ER S Ty

differencing

Trend Estimation

@ We define the first order difference operator v as
VY=Y, -V =(1-B)Y,,
where B is the backshift operator and is defined as

BY; =Y.

o Similarly the general order difference operator v?Y; is
defined recursively as V[V 'Y;]

@ The backshift operator of power ¢ is defined as BY; = Y;_,

In next slide we will see an example regarding the relationship
between v? and B



Difference and Backshift Notation

The second order difference is given by

v2Y; = V[VY;]




Difference and Backshift Notation

The second order difference is given by

v2Y; = V[VY;]
=V[Y;:-Yi1]




Estimating Trend and

Difference and Backshift Notation Seasonality

CLEMS@N

UNITVERSITY

Trend Estimation

The second order difference is given by

v2Y; = V[VY;]
=V[Y;-Yi1]
=Y -Y1) - (Vo1 - Vi)



Estimating Trend and

Difference and Backshift Notation Seasonality

CLEMS@N

UNITVERSITY

Trend Estimation

The second order difference is given by

V%Y, = V[VY]
=V[Y; - Y]
= (Y- Y1) = (Yie1 = Vi2)
=Y; -2V, 1+ Y0



Estimating Trend and

Difference and Backshift Notation Serrrne

CLEMS@N

UNITVERSITY

The second order difference is given by

Trend Estimation

v2Y; = V[VY:]
=V[Y; - Y]
=(Y; Y1) - (Yee1 - Yioo)
=Y, -2V, 1 +Yio
= (1-2B+B*Y,

In the next slide we will see an example of using differening to
remove the trend



Removing Trend via Differening

Consider a time series data with a linear trend (i.e.,

{Y; = Bo + B1t + n: }) where 1, is a stationary time series. Then
first order differencing results in a stationary series with no
trend. To see why

VY, =Y, -Yi,
=(Bo+pPit+n:) = (Bo+Pr(t—1) +m-1)
=B1+n =1

This is the sum of a stationary series and a constant, and
therefore we have successfully remove the linear trend.

Estimating Trend and
Seasonality

CLEMS@®N

UNITVERSITY

Trend Estimation



Notes on Differening SHRETULRL Rt

Seasonality

CLEMS@®N

UNITVERSITY

Trend Estimation

@ A polynomial trend of order ¢ can be removed by ¢-th
order differencing

@ By ¢-th order differencing a time series we are shortening
its length by ¢

@ Differencing does not allow you to estimate the trend, only
to remove it. Therefore it is not appropriate if the aim of
the analysis is to describe the trend



Estimating Trend and

Seasonal Component Estimation Seasonality

@ Let’s consider a situation where a time series consists of
only a seasonal component (assuming the trend has been
estimated/removed). In this scenario,

Estimating Seasonality
}/I‘, =S5t Mt
with {s;} having period d (i.e., s¢.jq = s for all integers j
andt), Y%, s, =0and E(n) =0

@ Two methods to estimate {s;}

o Harmonic regression

o Seasonal mean model

@ A method to remove {s,} = Lag differencing



Estimating Trend and

Harmonic Regression Seasonality

@ A harmonic regression model has the form CLEMS@N

UNITVERSITY

k
sy =y Ajcos(2mfj + ¢;).
J:l Estimating Seasonality
Foreach j =1, k:
o Aj; >0 is the amplitude of the j-th cosine wave

o f; controls the the frequency of the j-th cosine wave (how
often waves repeats)

o ¢, € [-m, ] is the phase of the j-th wave (where it starts)

@ The above can be expressed as
k
Z (Blj COS(Zﬂ'fj) + 52]' Sll’l(27’(’fj)) N
j=1

where ﬂlj = Aj COS(¢]‘) and ﬁgj = Aj sin(gbj) = if {fj ?:l
are known, we can use regression techniques to
estimate the parameters {3, ;, ﬂzj}é?zl



Estimating Trend and

Monthly Average Temperature in Dubuque, IA [Cryer & Chan, REeo Al

2008] CLEMS@®N

UNITVERSITY
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Estimating Seasonality
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Let’s assume that there is no trend in this time series.
In this context, our goal is to estimate s;, the seasonal
component.




Use a Harmonic Regression to Model Annual Cycles

Model: s; = 8y + 51 cos(2nt) + o sin(27t)

= annual cycles can be modeled by a linear combination of

cos and sin with 1-year period.

In R, we can easily create these harmonics using the

harmonic function in the TSA package

harmonics <-

cos

sin

05 4

10 4

harmonic(tempdub, 1)
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Estimating Trend and
Seasonality
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Estimating Seasonality
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R Code & Output o easnatty

o}

harReg <- 1lm(tempdub ~ harmonics)

summa r‘y(har‘Reg) Estimating Seasonality
Call:

Im(formula = tempdub ~ harmonics)

Residuals:
Min 10  Median 3Q Max
-11.1580 -2.2756 -0.1457 2.3754 11.2671

Coefficients:

Estimate Std. Error t value Pr(>Itl)
(Intercept) 46.2660 0.3088 149.816 < 2e-16 ***
harmonicscos(2*pi*t) -26.7079 0.4367 -61.154 < 2e-1b ***
harmonicssin(2*pi*t) -2.1697 0.4367 -4.968 1.93e-06 ***

Signif. codes: @ ‘***’ 9. 001 ‘**’ 9.01 ‘*’ .05 ‘.’ 0.1 * * 1
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Estimating Trend and
Seasonality

The Harmonic Regression Model Fi

Estimating Seasonality

70

(4,) ainresadway abelane Alyiuo

1968 1970 1972 1974 1976
Time (year)

1966

1964

232



Estimating Trend and

Seasonal Means Model Serrrne

UNITVERSITY

@ Harmonics regression assumes the seasonal pattern
has a regular shape, i.e., the height of the peaks is the
same as the depth of the troughs

Estimating Seasonality

@ A less restrictive approach is to model {s;} as

p1 fort=1,1+d,1+2d,-- ;
By fort=2,2+d,2+2d,+ ;

)

St =

By fort=d,2d,3d, -

@ This is the seasonal means model, the parameters
(B1, B2, B4)T can be estimated under the linear model
framework (think about ANOVA)
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R Output Esimatng rnd nd
Call: o
Im(formula = tempdub ~ month - 1) M
Residuals:

Min 1Q Median 30 Max
-8.2750 -2.2479 ©.1125 1.889% 9.8250 Estimating Seasonality
Coefficients:

Estimate Std. Error t value Pr(>ltl)

monthJanuary 16.608 0.987 16.83 <2e-1lb ***
monthFebruary 20.650 0.987 20.92 <2e-16 ***
monthMarch 32.475 0.987 32.90 <2e-1b ***
monthApril 46.525 0.987 47.14 <2e-1b ***
monthMay 58.092 0.987 58.86 <2e-16 ***
monthJune 67.500 0.987 68.39 <2e-1b **¥*
monthJuly 71.717 0.987 72.66 <2e-1b ***
monthAugust 89.333 0.987 70.25 <2e-1b ***
monthSeptember  61.025 @.987 61.83 <2e-16 ***
monthOctober 5@.975 @.987 51.65 <2e-1b ***
monthNovember 36.650 0.987 37.13 <2e-1lb ***
monthDecember 23.642 0.987 23.95 <2e-16 ***

Signif. codes: @ “***’ 9.@01 ‘**’ 0.01 ‘*’ 9.05 ‘.’ 0.1 * * 1
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The Seasonal Means Model Fit ST

Seasonality

CLEMS@N

UNITVERSITY

Estimating Seasonality
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Estimating Trend and

SeaSOI‘la| lefel‘enlng Seasonality

@ The lag-d difference operator, Vv, is defined by

VaYi=Y; - Yiq=(1- BYY,.

Estimating Seasonality

Note: This is NOT v¢!

o Example: Consider data that arise from the model
Y; = Bo + Bit + s + ¢, which has a linear trend and
seasonal component that repeats itself every d time
points. Then by just seasonal differencing (lag-d
differening here) this series becomes stationary.

VaYe =Y~ Yiq
=[Bo + Bit +s¢ +m] = [Bo + Br(t —d) + 5¢—q + Mi-d]
=dpBy + 1 — M-

2.36



Estimating the Trend and Seasonal variation Together
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Let’s perform a regression analysis to model both p; (assuming

a linear time trend) and s; (using cos and sin)
o {rd

time <- as.numeric(time(co2))
harmonics <- harmonic(co2, 1)

Im_trendSeason <- 1m(co2 ~ time + harmonics)
summary(lm_trendSeason)

Estimating Trend and
Seasonality

CLEMS@N

UNITVERSITY

Estimating Seasonality
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The Regression Fit
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Estimating Trend and
Seasonality
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Estimating Seasonality
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Seasonal and Trend decomposition using Loess [Cleveland, | ="y
et. al., 1990] CLEMS®N

UNITVERSITY

S e}
# Seasonal and Trend decomposition using Loess (STL)
par(mar = c(4, 3.6, 0.8, 0.6))

stl <- stl(co2, s.window = "periodic")

plot(stl, las = 1)

Estimating Seasonality
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