
Estimating Trend and
Seasonality

The Classical
Decomposition Model

Trend Estimation

Estimating Seasonality

2.1

Lecture 2
Estimating Trend and Seasonality
Readings: CC08 Chapter 3; SS17 Chapter 2; BD Chapter 1.5

MATH 8090 Time Series Analysis
Week 2

Whitney Huang
Clemson University



Estimating Trend and
Seasonality

The Classical
Decomposition Model

Trend Estimation

Estimating Seasonality

2.2

Agenda
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2.3

The Classical (Additive) Decomposition Model

The additive model for a time series {Yt} is

Yt = µt + st + ηt,

where

µt is the trend component

st is the seasonal component

ηt is the random (noise) component with E(ηt) = 0

Standard procedure:

(1) Estimate/remove the trend and seasonal components

(2) Analyze the remainder, the residuals η̂t = yt − µ̂t − ŝt

We will focus on (1) for this week
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2.4

Mauna Loa Atmospheric CO2 Concentration Revisited
Monthly atmospheric concentrations of CO2 at the Mauna Loa
Observatory [Source: Keeling & Whorf, Scripps Institution of
Oceanography]
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2.5

Estimating Trend for Nonseasonal Model

Assuming st = 0 (i.e., there is no “seasonal” variation), we
have

Yt = µt + ηt,

with E(ηt) = 0

Methods for estimating trends

Least squares regression

Smoothing

Alternatively, one can remove trend by differencing time
series
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2.6

Trend Estimation: Linear Regression

The additive nonseasonal time series model for {Yt} is

Yt = µt + ηt,

where the trend is assumed to be a linear combination of
known covariate series {xit}

p
i=1

µt = β0 +
p

∑
i=1

βixit.

Here we want to estimate β = (β0, β1,⋯, βp)
T from the

data {yt,{xit}
p
i=1}

T
t=1

You’re likely quite familiar with this formulation already⇒
Regression Analysis
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2.7

Some Examples of Covariate Series {xit}

Simple linear regression model:

µt = β0 + β1xt,

for example, the temperature trend at time t could be a
constant (β0) plus a multiple (β1) of the carbon dioxide
level at time t (xt)

Polynomial regression model:

µt = β0 +
p

∑
i=1

βit
i

Change point model:

µt = {
β0 if t ≤ t∗;
β0 + β1 if t ≥ t∗.
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2.8

Parameter Estimation: Ordinary Least Squares

Like in the linear regression setting, we can estimate the
parameters via ordinary least squares (OLS)

Specifically, we minimize the following objective function:

`ols =
T

∑
t=1

(yt − β0 −
p

∑
k=1

xktβk)
2.

The estimates β = (β0, β1,⋯, βp)
T minimizing the above

objective function are called the OLS estimates of β ⇒
they are easiest to express in matrix form
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2.9

The Model and Parameter Estimates in Matrix Form

Matrix representation:

Y =Xβ + η,

where Y =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Y1
⋮

YT

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, X =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 x11 x12 ⋯ x1p
1 x21 x22 ⋯ x2p
1 ⋮ ⋯ ⋯ ⋮

1 xT1 xT2 ⋯ xTp

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, and

η =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

η1
⋮

ηT

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Assuming XTX is invertible, the OLS estimate of β can
be shown to be

β̂ = (XTX)
−1XTY ,

and the lm function in R calculates OLS estimates
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2.10

Lake Huron Example Revisited

Let’s assume there is a linear trend in time⇒ we need to
estimate the intercept β0 and slope β1
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2.11

The R Output
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2.12

Plot the (Estimated) Trend µ̂t = β̂0 + β̂1t

β̂1 = −0.0242 (ft/yr)⇒ there seems to be a decreasing trend
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2.13

Plot the Residuals {η̂t = yt − β̂0 − β̂1t}

{η̂t} seems to exhibit some temporal dependence structure,
should we worry about the results we have (recall OLS makes
an i.i.d. assumption)?
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2.14

Statistical Properties of the OLS Estimates with Correlated
Errors

Assume the components of X are not random, the OLS
estimates β̂ are unbiased for β
Proof:

Since {ηt} is typically not an i.i.d. process (see the acf plot
below), statistical inferences regarding β will be invalid
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2.15

Smoothing or Local Averaging

In certain situations, we may want to relax the assumption on
the trend⇒ “non-parametric” approach

Here, we break the time series up into “small” blocks (each
with 10 years of data) and average each block

Doing this gives a very rough estimate of the trend. Can we do
better?



Estimating Trend and
Seasonality

The Classical
Decomposition Model

Trend Estimation

Estimating Seasonality

2.16

Moving Average Smoother
A moving average smoother estimates the trend at time t
by averaging the current observation and the q nearest
observations from either side. That is

µ̂t =
1

2q + 1

q

∑
j=−q

yt−j

q is the “smoothing” parameter, which controls the
smoothness of the estimated trend µ̂t
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2.17

Exponential Smoothing

Let α ∈ [0,1] be some fixed constant, defined

µ̂t = {
Y1 if t = 1;
αYt + (1 − α)µ̂t−1 t = 2,⋯T .

For t = 2,⋯, T , we can rewrite µ̂t as

t−2

∑
j=0

α(1 − α)jYt−j + (1 − α)t−1Y1.

⇒ it is a one-sided moving average filter with exponentially
decreasing weights. One can alter α to control the
amounts of smoothing (see next slide for an example)
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2.18

α is the Smoothing Parameter for Exponential Smoothing

The smaller the α, the smoother the resulting trend
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2.19

Differencing

The final method we consider for removing trends is
differencing

We define the first order difference operator ∇ as

∇Yt = Yt − Yt−1 = (1 −B)Yt,

where B is the backshift operator and is defined as
BYt = Yt−1.

Similarly the general order difference operator ∇qYt is
defined recursively as ∇[∇q−1Yt]

The backshift operator of power q is defined as BqYt = Yt−q

In next slide we will see an example regarding the relationship
between ∇q and Bq
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2.20

Difference and Backshift Notation

The second order difference is given by

∇
2Yt = ∇[∇Yt]
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2.21

Difference and Backshift Notation

The second order difference is given by

∇
2Yt = ∇[∇Yt]

= ∇[Yt − Yt−1]
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2.22

Difference and Backshift Notation

The second order difference is given by

∇
2Yt = ∇[∇Yt]

= ∇[Yt − Yt−1]

= (Yt − Yt−1) − (Yt−1 − Yt−2)
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2.23

Difference and Backshift Notation

The second order difference is given by

∇
2Yt = ∇[∇Yt]

= ∇[Yt − Yt−1]

= (Yt − Yt−1) − (Yt−1 − Yt−2)

= Yt − 2Yt−1 + Yt−2
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2.24

Difference and Backshift Notation

The second order difference is given by

∇
2Yt = ∇[∇Yt]

= ∇[Yt − Yt−1]

= (Yt − Yt−1) − (Yt−1 − Yt−2)

= Yt − 2Yt−1 + Yt−2

= (1 − 2B +B2
)Yt

In the next slide we will see an example of using differening to
remove the trend
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2.25

Removing Trend via Differening

Consider a time series data with a linear trend (i.e.,
{Yt = β0 + β1t + ηt}) where ηt is a stationary time series. Then
first order differencing results in a stationary series with no
trend. To see why

∇Yt = Yt − Yt−1

= (β0 + β1t + ηt) − (β0 + β1(t − 1) + ηt−1)

= β1 + ηt − ηt−1

This is the sum of a stationary series and a constant, and
therefore we have successfully remove the linear trend.
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2.26

Notes on Differening

A polynomial trend of order q can be removed by q-th
order differencing

By q-th order differencing a time series we are shortening
its length by q

Differencing does not allow you to estimate the trend, only
to remove it. Therefore it is not appropriate if the aim of
the analysis is to describe the trend
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2.27

Seasonal Component Estimation

Let’s consider a situation where a time series consists of
only a seasonal component (assuming the trend has been
estimated/removed). In this scenario,

Yt = st + ηt,

with {st} having period d (i.e., st+jd = st for all integers j
and t), ∑d

t=1 st = 0 and E(ηt) = 0

Two methods to estimate {st}

Harmonic regression

Seasonal mean model

A method to remove {st}⇒ Lag differencing
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2.28

Harmonic Regression

A harmonic regression model has the form

st =
k

∑
j=1

Aj cos(2πfj + φj).

For each j = 1,⋯, k:

Aj > 0 is the amplitude of the j-th cosine wave

fj controls the the frequency of the j-th cosine wave (how
often waves repeats)

φj ∈ [−π,π] is the phase of the j-th wave (where it starts)

The above can be expressed as

k

∑
j=1

(β1j cos(2πfj) + β2j sin(2πfj)) ,

where β1j = Aj cos(φj) and β2j = Aj sin(φj)⇒ if {fj}kj=1
are known, we can use regression techniques to
estimate the parameters {β1j , β2j}

k
j=1
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2.29

Monthly Average Temperature in Dubuque, IA [Cryer & Chan,
2008]
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Let’s assume that there is no trend in this time series.
In this context, our goal is to estimate st, the seasonal
component.
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2.30

Use a Harmonic Regression to Model Annual Cycles

Model: st = β0 + β1 cos(2πt) + β2 sin(2πt)

⇒ annual cycles can be modeled by a linear combination of
cos and sin with 1-year period.

In R, we can easily create these harmonics using the
harmonic function in the TSA package
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2.31

R Code & Output
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2.32

The Harmonic Regression Model Fit
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2.33

Seasonal Means Model

Harmonics regression assumes the seasonal pattern
has a regular shape, i.e., the height of the peaks is the
same as the depth of the troughs

A less restrictive approach is to model {st} as

st =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

β1 for t = 1,1 + d,1 + 2d,⋯ ;
β2 for t = 2,2 + d,2 + 2d,⋯ ;
⋮ ⋮ ;
βd for t = d,2d,3d,⋯ .

This is the seasonal means model, the parameters
(β1, β2,⋯, βd)

T can be estimated under the linear model
framework (think about ANOVA)
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2.34

R Output
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2.35

The Seasonal Means Model Fit
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2.36

Seasonal Differening

The lag-d difference operator, ∇d, is defined by

∇dYt = Yt − Yt−d = (1 −Bd
)Yt.

Note: This is NOT ∇d!

Example: Consider data that arise from the model
Yt = β0 + β1t + st + ηt, which has a linear trend and
seasonal component that repeats itself every d time
points. Then by just seasonal differencing (lag-d
differening here) this series becomes stationary.

∇dYt = Yt − Yt−d

= [β0 + β1t + st + ηt] − [β0 + β1(t − d) + st−d + ηt−d]

= dβ1 + ηt − ηt−d
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2.37

Estimating the Trend and Seasonal variation Together

Let’s perform a regression analysis to model both µt (assuming
a linear time trend) and st (using cos and sin)
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2.38

The Regression Fit
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2.39

Seasonal and Trend decomposition using Loess [Cleveland,
et. al., 1990]
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