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Review: The Additive Decomposition
@ The additive model for a time series {Y;} is
Yi= g+ 8¢ +my,
where

o u. is the trend component
o s is the seasonal component

o 7 is the random (noise) component with E(7;) =0

@ Standard procedure:

(1) Estimate/remove the trend and seasonal components

(2) Analyze the remainder, the residuals 7 = y: — it — 3¢

@ We will focus on (2) for the next few weeks
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Stationary processes

Time Series Models

@ Atime series model is a specification of the probabilistic -
distribution of a sequence of random variables (RVs) n, pulocovaraince

(The observed time series is a realization of such a
sequence of random variables)

@ The simplest time series is i.i.d. (independent and
identically distributed) noise

o {n:} is a sequence of independent and identically
distributed zero-mean (i.e., E(n:) = 0, Vt) random variables
= no temporal dependence

o ltis of little value of using i.i.d. noise model to conduct
forecast as there is no information from the past
observations

o But, we will use i.i.d. model as a building block to develop
time series models that can accommodate time dependence



Stationary processes

Example Realizations of i.i.d. Noise
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Means and Autocovarainces

A time series model could also be a specification of the means [0
and autocovariances of the RVs Funtens

@ The mean function of {n;} is

e = E(ne).

@ u is the population mean at time ¢, which can be
computed as:

| [ mef(me)dne when n, is a continuous RV;
FEZ 2 mp(m), when 7, is a discrete RV,

where f(-) and p(-) are the probability density function and
probability mass function of n;, respectively

3.6



Examples of Mean Functions

o Example 1: What is the mean function for {r,}, an i.i.d.
N(0,0?) process?

o Example 2: For each time point, let Y; = 8y + 81t + n; with
8o and ; some constants and 7, is defined above. What
is py ()7
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Mean and
Autocovaraince
Functions
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Review: The Covariance Between Two RVs
@ The covariance between the RVs X and Y is M\I

Mean and
Autocovaraince

COV(X,Y) = E{(X - ,U/X)(Y — ,U’Y)} Functions
=EB(XY) - puxpy-

It is a measure of linear dependence between the two
RVs. When X =Y we have

Cov(X,X) =Var(X).
@ For constants a,b,c,and RVs X, Y, Z:

Cov(aX +bY +¢,7Z) =Cov(aX, Z) + Cov(bY, Z)
=aCov(X,Z) +bCov(Y, Z)

=

Var(X +Y) = Cov(X, X) + Cov(X,Y) + Cov(Y, X) + Cov(Y,Y)
=Var(X) +Var(Y) + 2Cov(X,Y)
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Autocovariance Function

@ The autocovariance function of {r,} is

Mean and
Autocovaraince
Functions

v(s,t) = Cov(ns,me) = E[(ms — 1s) (e = 1) ]

It measures the strength of linear dependence between
two RVs n, and 7,

o Properties:

@ v(s,t) =~(t,s) foreach sand ¢
o When s =t we have
v(t,t) = Cov(ne,m:) = Cov(ny) = o7
the value of the variance function at time ¢

o ~(s,t) is a non-negative definite function (will come back to
this later)
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Autocorrelation Function

@ The autocorrelation function of {n;} is Jeanand

Functions
V(s,1)
p(s,t) = Corr(ns,m;) =
V(s 8)y(t 1)

It measures the “scale invariant” linear association
between 7, and »,

@ Properties:

o —-1<p(s,t)<1foreachsandt
o p(s,t) =p(t,s)foreach sand ¢
o p(t,t)=1foreacht

@ p(-,-) is a non-negative definite function
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@ We typically need “replicates” to estimate population
quantities. For example, we use

P

to be the estimate of ux, the population mean of the
single RV, X

@ However, in time series analysis, we have n =1 (i.e., no
replication) because we only have one realized value at
each time point

Stationarity

zM—'

@ Stationarity means that some characteristic of {r;} does
not depend on the time point, ¢, only on the “time lag”
between time points so that we can create “replicates”

Next, we will talk about strict stationarity and weak
stationarity
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Strictly Stationary Processes

o Atime series, {1}, is strictly stationary if

e

[7717 2, 77T:| [771+h7 2+h," "nT+h:|7 Stationarity

for all integers h and T > 1 = the joint distribution are
unaffected by time shifts

@ Under such the strict stationarity

o {n:} is identically distributed but not (necessarily)
independent

o When py is finite, u: = u is independent of time ¢
o When the variance function exists,
v(s,t) =y(s+h,t+h),

for any s, t, and h
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Weakly Stationary Processes
o {n.} is weakly stationary if

° E(nt) =M= Stationarity

o Cov(ne, me+n) = v(t,t + h) =~v(h), finite constant that can
depend on h but noton ¢

@ Other names for this type of stationarity include
second-order, covariance, wide senese. The quantity A is
called the lag

@ Weak and strict stationarity

o A strictly stationary process {7} is also weakly stationary
as long as u is finite

o Weak stationarity does not imply strict stationarity!
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Autocovariance Function of Stationary Processes

The autocovariance function (ACVF) of a stationary process
{n,} is defined to be

Stationarity

v (h) = Cov(n, ne+n)
=E[(ne — 1) (s — )],

which measures the lag-h time dependence

Properties of the ACVF:

© v(0) = Vvar(i)
@ ~v(-h) =~(h) for each h

@ (s -t) as a function of (s -t) is non-negative definite
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Autocorrelation Function of Stationary Processes

The autocorrelation function (ACF) of a stationary process {n;}
is defined to be

_ (k)
M=)

which measures the “scale invariant” lag-h time dependence

Properties of the ACF:

@ -1<p(h)<1land p(0)=1foreachh
@ p(-h) =p(h) for each h

@ p(s-t) as a function of (s - t) is non-negative definite
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The White Noise Process

Let's assume E(;) =  and Var(n;) = 0% < co. {n;} is a white
noise or WN(pu, 0?) process if

Some Examples of

'y(h) = 07 Stationary Processes
forh+0
o {n} is stationary
@ However, distributions of 7; and 7.1 can be different!

@ Alli.i.d. noise with finite variance (o2 < 0) is white noise but
the converse need not be true



Examples Realizations of White Noise Processes

i.i.d. N(2, 4) noise
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The Moving Average Process of First Order (MA(1))

Let {Z;} be a WN(0,0?) process and § be some constant € R.
For each integer ¢, let

Some Examples of
Stationary Processes

m = Zt + 9Zt—1-

@ The sequences of RVs {1} is called the moving average
process of order 1 or MA(1) process

@ One can show that the MA(1) process {7} is stationary



First-Order Moving Average Process: Mean Function

Need to show the mean function is NOT a function of time ¢

E[n:] =E[Z; +0Z;1]
=E[Z,] + 0E[Z,_1]
—0+0x0
=0, Vi
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First-Order Moving Average Process: Covariance Function

Need to show the autovariance function ~(-,-) is a function of
time lag only

Some Examples of
Stationary Processes

~y(t,t +h) = Cov(ne, Nesn)
=CoV(Zy +0Z11, Zyop, + 0 Z1ip—1)
= COV(Zt7 Zt+h) + COV(Zta 9Zt+h—1)
+Cov(0Zi-1, Zpin) + CoV(0Z4-1,0Z;11,-1)

if h=0, we have  ~(t,t+h)=02+6%02=02(1+6%)
if h==+1, we have ~(t,t+h) =002
if |h| >2, we have  ~(t,t+h) =0

= ~(t,t+ h) only depends on h but not on ¢ @
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ACVF:

Some Examples of
Stationary Processes

o?(1+6%) h=0;
Ay =1 6ot -1

0 |h| >2

We can get ACF by dividing everything by v(0) = o2(1 + 6?)

1 h=0;
ph) =1 1= |hl=1;
0 |hl>2.
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Examples Realizations of MA(1) Processes
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First-order autoregressive process, AR(1)

Let {Z;} be a WN(0, 02) process, and -1 < ¢ < 1 be a constant.
Let's assume {n;} is a stationary process with Some Examples of

Stationary Processes

e = Pne-1 + Zt,

for each integer ¢, where 1, and Z, are uncorrelated for each
s < t = future noise is uncorrelated with the current time point)

We will see later there is only one unique solution to this
equation. Such a sequence {7} of RVs is called an AR(1)
process



Properties of the AR(1) process
Want to find the mean value 1 under the weakly stationarity
assumption

E[ne] = E[¢ni-1 + Z4]
p=@E[m1] +E[Z¢]
p=ou+0

=>u=0, Vi

©

Want to find (/) under the weakly stationarity assumption

Cov(ne, me-n) = Cov(Pne-1 + Zs, M)
Y(=h) = ¢CoV(ns-1,m¢-n) + COV(Zt, 1e-1)
v(h) =¢y(h-1)+0
= 7(h) = py(h—1) == ¢"I4(0)

Next, need to figure out v(0)
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Properties of the AR(1) process Cont’d
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Var(n.) = Var(¢m-1 + Z)
7(0) = *(0) + 0
= (1-6)7(0) = o?

=5(0) = 2

1-¢?

©

Therefore, we have

g h=0;
v(h) = { ;ﬁfz

and




Examples Realizations of AR(1) Processes
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The Random Walk Process

Let {Z;} be a WN(0,0?) process and for ¢ > 1 definite

t
Tt :Z1+Z2+"'+Zt = ZZS Some Examples of

s=1 Stationary Processes

@ The sequence of RVs {1} is called a random walk process
@ Special case: If we have {Z;} such that for each ¢

1, z=1;
P(Zt—Z)—{ g’ Z:—l,

then {n;} is a simple symmetric random walk

@ The random walk process is not stationary!



Example Realizations of Random Walk Processes
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Gaussian Processes

{n:} is a Gaussian process (GP) if the joint distribution of any
collection of the RVs has a multivariate normal (aka Gaussian)
distribution
Some Examples of

Stationary Processes

@ The distribution of a GP is fully characterized by u(-), the
mean function, and ~(-,-), the autocovariance function.
The joint probability density function of = (11,72, -, n7)*
is

F) = ——esp (-5 -5 - )
M= o P e n-w)),

where p = (p1, po, - ur )’ and the (i,5) element of the
covariance matrix X is (4, )

o If a GP {n.} is weakly stationary then the process is also
strictly stationary
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Estimating the Mean of Stationary Processes
Let {7;} be stationary with mean u and ACVF ~(s,t) = v(s - t) m
@ A natural estimator of u is the sample mean

1L
U:T;m

77 is an unbiased estimator of y, i.e.

Estimation of Mean
and Autocovariance
Functions

@ Since {n;} is stationary, we have
var(7) = Var(z m)
=1

1 T T

= ﬁ z Z Cov(nmnt)
t=1
1 T T

=72 2 Z (s-1)

o Exercise: Show

T-1
Var(7j) = ! )(1—@)7@)

3.30
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Estimation of Mean

Suppos_e {171,7_72,773} is an AR(1) process yvith || < 1_and 2 uecovarance
innovation variance 2. Show that the variance of 7 is

2
m(3+4¢+2¢2)

Solution:

3.31
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