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Agenda

1 Estimation of Mean and Autocovariance Function

2 Testing Temporal Dependence

3 Linear Processes

4 MA(q) and AR(p) Processes
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4.3

The Sampling Distribution of η̄

Let

vT =

(T−1)

∑
h=−(T−1)

(1 −
∣h∣

T
)γ(h)

If {ηt} is Gaussian we have
√
T (η̄ − µ) ∼ N(0, vT )

The result above is approximate for many non-Gaussian
time series

In practice we also need to estimate γ(h) from the data
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4.4

Confidence Intervals for µ

If γ(h)→ 0 as h→∞ then

v = lim
T→∞

vT =
∞

∑
h=−∞

γ(h) exists.

Further, if {ηt} is Gaussian and

∞

∑
h=−∞

∣γ(h)∣ <∞,

then an approximate large-sample 95% CI for µ is given by

[η̄ − 1.96

√
v

T
, η̄ + 1.96

√
v

T
]
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4.5

Strategies for Estimating v

Parametric:

Assume a parametric model γθ(⋅), and calculate

v̂ =
∞

∑
h=−∞

γθ̂(h)

based on the ACVF for that model

The standard error, v, will depend on the parameters θ of
the parametric model

Nonparametric:

Estimate v by

v̂ =
∞

∑
h=−∞

γ̂(h),

where γ̂(⋅) is an nonparametric estimate of ACVF
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4.6

Examples of Parametric Forms for v

i.i.d. Gaussian Noise: v = γ(0) = σ2 ⇒ CI reduces to the
classical case:

⎡
⎢
⎢
⎢
⎢
⎣

η̄ − 1.96

√
σ2

T
, η̄ + 1.96

√
σ2

T

⎤
⎥
⎥
⎥
⎥
⎦

MA(1) process: We have

v =
∞

∑
h=−∞

γ(h) = γ(−1) + γ(0) + γ(1)

= γ(0) + 2γ(1)

= σ2
(1 + θ2 + 2θ) = σ2

(1 + θ)2

Exercise: Show for an AR(1) process we have

v =
σ2

(1 − φ)2
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4.7

An Estimator of γ(⋅)

Goal: Want to estimate

γ(h) = Cov(ηt, ηt+h) = E [(ηt − µ)(ηt+h − µ)]

using data {ηt}
T
t=1

For ∣h∣ < T , consider γ̂(h) = 1
T ∑

T−∣h∣
t=1 (ηt − η̄)(ηt+∣h∣ − η̄). We

call γ̂(h) the sample ACVF

The sample ACVF is a biased estimator of γ(h), but, it is
used as the standard estimate of γ(h)

γ̂(h) are even and non-negative definite
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4.8

The Sample Autocorrelation Function

The sample autocorrelation function (ACF) is defined for
∣h∣ < T by

ρ̂(h) =
γ̂(h)

γ̂(0)
.

Rule of thumb: Box and Jenkins (1976) recommend
using ρ̂(h) and γ̂(h) only for ∣h∣

T
≤ 1

4
and T ≥ 50

This is because estimates ρ̂(h) and γ̂(h) are unstable for
large ∣h∣ as there will be no enough data points going into
the estimator
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4.9

Calculating the Sample ACF in R

We use acf function to calculate the sample ACF

Lake Huron Example
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4.10

Asymptotic Distribution of the Sample ACF [Bartlett, 1946]

Let {ηt} be a stationary process we suppose that the ACF

ρ = (ρ(1), ρ(2),⋯, ρ(k))
T

is estimated by

ρ̂ = (ρ̂(1), ρ̂(2),⋯, ρ̂(k))
T

For large T

ρ̂
⋅
∼ Nk(ρ,

1

T
W ),

where Nk is the K-variate normal distribution and W is an
k × k covariance matrix with (i, j) element defined by

wij =
∞

∑
k=1

aikajk,

where aik = ρ(k + i) + ρ(k − i) − 2ρ(k)ρ(i)
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4.11

Using the ACF as a Test for i.i.d. Noise

When {ηt} is an i.i.d. process with finite variance, Bartlett’s
result simplifies for each h ≠ 0

ρ̂(h)
⋅
∼ N(0,

1

T
).

This suggests a diagnostic for i.i.d. noise:

1. Plot the lag h versus the sample ACF ρ̂(h)

2. Draw two horizontal lines at ± 1.96
√
T

(blue dashed lines in
R)

3. About 95% of the {ρ̂(h) ∶ h = 1,2,3,⋯} should be within
the lines if we have i.i.d. noise
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4.12

The Portmanteau Test [Box and Pierce, 1970] for i.i.d. Noise

Suppose we wish to test:

H0 ∶ {η1, η2,⋯, ηT } is an i.i.d. noise sequence
H1 ∶H0 is false

Under H0,

ρ̂(h)
⋅
∼ N(0,

1

T
)
d
=

1
√
T

N(0,1)

Hence

Q = T
k

∑
i=1

ρ̂2(h)
⋅
∼ χ2

df=k

We reject H0 if Q > χ2
k(1 − α), the 1 − α quatile of the

chi-squared distribution with k degrees of freedom
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4.13

Ljung-Box Test [Ljung and Box, 1978]

Ljung and Box [1978] showed that

QLB = T (T − 2)
k

∑
h=1

ρ̂2(h)

T − h

⋅
∼ χ2

k.

The Ljung-Box test can be more powerful than the
Portmanteau test

Both the Portmanteau Test (aka Box-Pierce test) and
Ljung-Box test can be carried out in R using the function
Box.test
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4.14

Examples in R
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4.15

Linear Processes

A time series {ηt} is a linear process with mean µ if we
can write it as

ηt = µ +
∞

∑
j=−∞

ψjZj , ∀t,

where µ is a real-valued constant, {Zt} is a WN(0, σ2)

process and {ψj} is a set of absolutely summable
constants1

Absolute summability of the constants guarantees that the
infinite sum converges

1A set of real-valued constants {ψj ∶ j ∈ Z} is absolutely summable if
∑∞j=−∞ ∣ψj ∣ <∞
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4.16

Example: Moving Average Process of Order q, MA(q)

Let {Zt} be a WN(0, σ2) process. For an integer q > 0 and
constants θ1,⋯, θq with θq ≠ 0, define

ηt = Zt + θ1Zt−1 +⋯ + θqZt−q

= θ0Zt + θ1Zt−1 +⋯ + θqZt−q

=

q

∑
j=0

θjZt−j ,

where we let θ0 = 1

{ηt} is known as the moving average process of order q, or the
MA(q) process, and, by definition, is a linear process
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4.17

Defining Linear Processes with Backward Shifts

Recall the backward shift operator, B, is defined by
Bηt = ηt−1

We can represent a linear process using the backward
shift operator as ηt = µ + ψ(B)Zt, where we let
ψ(B) = ∑

∞
j=−∞ ψjB

j

Example: we can write a mean zero MA(1) process as

ηt = µ + ψ(B)Zt,

where µ = 0 and ψ(B) = 1 + θB
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4.18

Linear Filtering Preserves Stationarity

Let {Yt} be a time series and {ψj} be a set of absolutely
summable constants that does not depend on time

Definition: A linear time invariant filtering of {Yt} with
coefficients {ψj} that do not depend on time is defined by

Xt = ψ(B)Yt

Theorem: Suppose {Yt} is a zero mean stationary series
with ACVF γY (⋅). Then {Xt} is a zero mean stationary
process with ACVF

γX(h) =
∞

∑
j=−∞

∞

∑
k=−∞

ψjψkγY (j − k + h)
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4.19

Example: The MA(q) Process is Stationary

By the filtering preserves stationarity result, the MA(q) process
is a stationary process with mean zero and ACVF

γ(h) = σ2
q

∑
j=0

θjθj+h

γ(h) =
q

∑
j=0

q

∑
k=0

θjθkγZ(j − k + h)

= σ2
q

∑
j=0

q

∑
k=0

θjθk1(k = j + h)

= σ2
q

∑
j=0

θjθj+h



Stationary processes
and Linear
Processes

Estimation of Mean
and Autocovariance
Function

Testing Temporal
Dependence

Linear Processes

MA(q) and AR(p)
Processes

4.19

Example: The MA(q) Process is Stationary

By the filtering preserves stationarity result, the MA(q) process
is a stationary process with mean zero and ACVF

γ(h) = σ2
q

∑
j=0

θjθj+h

γ(h) =
q

∑
j=0

q

∑
k=0

θjθkγZ(j − k + h)

= σ2
q

∑
j=0

q

∑
k=0

θjθk1(k = j + h)

= σ2
q

∑
j=0

θjθj+h
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4.20

Processes with a Correlation that Cuts Off

A time series ηt is q-correlated if

ηt and ηs are uncorrelated ∀∣t − s∣ > q,

i.e., Cov(ηt, ηs) = 0,∀∣t − s∣ > q

A time series {ηt} is q-dependent if

ηt and ηs are independent ∀∣t − s∣ > q.

Theorem: if {ηt} is a stationary q-correlated time series
with zero mean, then it can be always be represented as
an MA(q) process
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4.21

The autoregressive process of order p, AR(p)

This process is attributed to George Udny Yule. The AR(1)
process has also been called the Markov process

Let {Zt} be a WN(0, σ2) process and let {φ1,⋯, φp} be a
set of constants for some integer p > 0 with φp ≠ 0

The AR(p) process is defined to be the solution to the
equation

ηt =
p

∑
j=1

φjηt−j +Zt ⇒ ηt −
p

∑
j=1

φjηt−j

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
φ(B)ηt

= Zt,

where we let φ(B) = 1 −∑
p
j=1 φjB

j
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4.22

A Stationary Solution for AR(1)

We want the solution to the AR equation to yield a
stationary process. Let’s first consider AR(1). We will
demonstrate that a stationary solution exists for ∣φ1∣ < 1.

We first write

ηt = φ1ηt−1 +Zt = φ1(φ1ηt−2 +Zt−1) +Zt

= φ21ηt−2 + φ1Zt−1 +Zt

⋮

= φk1ηt−k +
k−1

∑
j=0

φj1Zt−j

⋮

=
∞

∑
j=0

φj1Zt−j
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4.23

AR(1) Example Cont’d
Now let ψj = φ

j
1. We then have

ηt =
∞

∑
j=0

ψjZt−j .

Using the fact that, for ∣a∣ < 1, ∑∞j=0 a
j = 1

1−a
, the sequence

{ψj} is absolutely summable

Thus, since {ηt} is a linear process, it follows by the
filtering preserves stationarity result that {ηt} is a zero
mean stationary process with ACVF

γ(h) = σ2
∞

∑
j=0

ψjψj+h

= σ2
∞

∑
j=0

φj1φ
j+h
1

= σ2φh
∞

∑
j=0

(φ21)
j
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4.24

AR(1) Example Cont’d

Now ∣φ1∣ < 1 implies that ∣φ21∣ < 1 and therefore we have

γ(h) =
σ2φh1
1 − φ21

When ∣φ1∣ ≥ 1

No stationary solutions exist for ∣φ1∣ = 1

When ∣φ1∣ > 1, dividing by φ1 for both sides we get

φ−11 ηt = ηt−1 + φ
−1
1 Zt

⇒ ηt−1 = φ
−1
1 ηt − φ

−1
1 Zt

A linear combination of future Zt’s⇒ we have a stationary
solution, but, ηt depends on future {Zt}’s–This process is
said to be not causal

If we assume that ηs and Zt are uncorrelated for each t > s,
∣φ1∣ < 1 is the only stationary solution to the AR equation
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4.25

The Autoregressive Operator

AR(1) process

ηt = φ1ηt−1 +Zt ⇒ (1 − φ1B)ηt = Zt ⇒ ηt = (1 − φ1B)
−1Zt

Recall ∑∞j=0 a
j = 1

1−a
= (1 − a)−1. We have

ηt =
∞

∑
j=0

(φ1B)
jZt =

∞

∑
j=0

φj1B
jZt =

∞

∑
j=0

φjZt−j

⇒ This is another way to show that AR(1) is a linear
process

Here 1 − φ1B is the AR characteristic polynomial
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4.26

The Second-Order Autoregressive Process

Now consider the series satisfying

ηt = φ1ηt−1 + φ2ηt−2 +Zt,

where, again, we assume that Zt is independent of ηt−1, ηt−2,⋯

The AR characteristic polynomial is

φ(B) = 1 − φ1B − φ2B
2

The corresponding AR characteristic equation is

φ(B) = 1 − φ1B − φ2B
2
= 0
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4.27

Stationarity of the AR(2) Process

A stationary solution exists if and only if the roots of the
AR characteristic equation exceed 1 in absolute value

For the AR(2) the roots of the quadratic characteristic
equation are

φ1 ±
√
φ21 − 4φ2

−2φ2

These roots exceed 1 in absolute value if

φ1 + φ2 < 1, φ2 − φ1 < 1, and ∣φ2∣ < 1

We say that the roots should lie outside the unit circle in
the complex plane. This statement will generalize to the
AR(p) case
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4.28

The Autocorrelation Function for the AR(2) Process

Yule-Walker equations:

ηt = φ1ηt−1 + φ2η2 +Zt

⇒ ηtηt−h = φ1ηt−1ηt−h + φ2ηt−2ηt−h +Ztηt−h

⇒ γ(h) = φ1γ(h − 1) + φ2γ(h − 2)

⇒ ρ(h) = φ1ρ(h − 1) + φ2ρ(h − 2),

h = 1,2,⋯

Setting h = 1, we have
ρ(1) = φ1 ρ(0)

±
=1

+φ2 ρ(−1)
²
=ρ(1)

⇒ ρ(1) = φ1

1−φ2

ρ(2) = φ1ρ(1) + φ2ρ(0) =
φ2(1−φ2)+φ

2
1

1−φ2
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4.29

The Variance for the AR(2) Model

Taking the variance of both sides of AR(2) equations:

ηt = φ1ηt−1 + φ2ηt−2 +Zt,

yields

γ(0) = Var (φ1ηt−1 + φ2ηt−2) +Var(Zt)

= (φ21 + φ
2
2)γ(0) + 2φ1φ2γ(1) + σ

2

= (φ21 + φ
2
2)γ(0) + 2φ1φ2 (

φ1γ(0)

1 − φ2
) + σ2

=
(1 − φ2)σ

2

(1 − φ2)(1 − φ21 − φ
2
2) − 2φ2φ21

= (
1 − φ2
1 + φ2

)
σ2

(1 − φ2)2 − φ21
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4.30

The General Autoregressive Processes
Consider now the pth-order autoregressive model:

ηt = φ1ηt−1 + φ2ηt−2 +⋯ + φpηt−p +Zt

AR characteristic polynomial:

φ(B) = 1 − φ1B − φ2B
2
−⋯ − φpB

p

AR characteristic equation:

1 − φ1B − φ2B
2
−⋯ − φpB

p
= 0

Yule-Walker equations:

ρ(1) = φ1 + φ2ρ(1) +⋯ + φpρ(p − 1)

ρ(2) = φ1ρ(1) + φ2 +⋯ + φpρ(p − 2)

⋮

ρ(p) = φ1ρ(p − 1) + φ2ρ(p − 2) +⋯ + φp

Variance:

γ(0) = φ1γ(1) + φ2γ(2) +⋯ + φpγ(p) + σ
2

=
σ2

1 − φ1ρ(1) −⋯ − φpρ(p)
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