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Agenda

G Estimation of Mean and Autocovariance Function
e Testing Temporal Dependence
e Linear Processes

o MA(q¢) and AR(p) Processes




The Sampling Distribution of 7 ST

and Linear
Processes

Let and utocovarance
(T—l) |h| Function
w3 (1-8)sm)
h=—(T-1)

o If {n.} is Gaussian we have

VT (5= 1) ~ N(0, v7)

@ The result above is approximate for many non-Gaussian
time series

@ In practice we also need to estimate (/) from the data
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Confidence Intervals for 1 o
Processes
CLEMS@N
[+ If ’}/(h) d O as h - 0 then Estimation of Mean

and Autocovariance
Function

v= Th_r)rol<> vp = h;m'y(h) exists.
o Further, if {n,} is Gaussian and

S ()] < oo,
h=—oc0

then an approximate large-sample 95% Cl for u is given by

v v
n—1. — 1+ 1. —
[" 96\@"“ 96\/;]

4.4



Strategies for Estimating v ST
Processes

. CLEMS@N

@ Parametric:

Estimation of Mean
and Autocovariance

o Assume a parametric model vg(-), and calculate Function
o= 6(h)
h=—o0

based on the ACVF for that model

o The standard error, v, will depend on the parameters 6 of
the parametric model

@ Nonparametric:

o Estimate v by

b= 3 A(h),

h=—0c0

where 4(-) is an nonparametric estimate of ACVF
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Examples of Parametric Forms for v

@ i.i.d. Gaussian Noise: v = 7(0) = 02 = Cl reduces to the
classical case:

[ o2 o2
n—1. —,7+1.96\/ —
[n 96 T,’17+ 9 T]

@ MA(1) process: We have

v= hi v(h) =v(-1) +7(0) + (1)

=7(0) +2v(1)
=o?(1+6%+20) =c%(1+0)*

o Exercise: Show for an AR(1) process we have

0_2

(1-¢)?

Stationary processes
and Linear
Processes

CLEMS@N

UNTVERSITY

Estimation of Mean
and Autocovariance
Function
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Stationary processes

An Estimator of () and Linear

Processes

CLEMS@®N

UNTVERSITY

Goal: Want to estimate S
and Autocovariance
Function

y(h) = Cov(ne, nevn) = E[(ne = 1) (esn — 1) ]

using data {n,}Z,

o For || < T, consider 4(h) = £ 5" (1, = 7) (ny.apsy 7). We
call 4(h) the sample ACVF

@ The sample ACVF is a biased estimator of y(h), but, it is
used as the standard estimate of (h)

@ 4(h) are even and non-negative definite
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The Sample Autocorrelation Function

@ The sample autocorrelation function (ACF) is defined for
|n| < T by
y(h)

P(h) = 2@y

@ Rule of thumb: Box and Jenkins (1976) recommend

. ~ ~ h
using /() and 4(h) only for 2 < 1 and T > 50

@ This is because estimates p(h) and 4(h) are unstable for
large |h| as there will be no enough data points going into
the estimator

Stationary processes
and Linear
Processes

CLEMS@®N

UNTVERSITY

Estimation of Mean
and Autocovariance
Function
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Calculating the Sample ACF in R

@ We use acft function to calculate the sample ACF

@ Lake Huron Example

Depth (ft)

ACF

582 —
581 —
580 —
579 —
578 —
577 —
576 —

1940 1960

1.0 A
0.8
0.6
0.4 4
0.2 —

-0.2 —

Stationary processes
and Linear
Processes
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Estimation of Mean
and Autocovariance
Function

49



Stationary processes

Asymptotic Distribution of the Sample ACF [Bartlett, 1946] and Linear

Processes

Let {n;} be a stationary process we suppose that the ACF CLEMS@N
p=(p(1),p(2), - p(k))" et

Function

is estimated by

p=(p(1),p(2), p(k))"

o Forlarge T’
. 1
p~Nilp, W),
where Ny, is the K-variate normal distribution and W is an
k x k covariance matrix with (4, j) element defined by

oo
W5 = Z ik Ak,
k=1

where a;, = p(k + 1) + p(k —1) — 2p(k)p(3)



Stationary processes

Using the ACF as a Test for i.i.d. Noise and Linear

Processes

CLEMS@®N
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When {n:} is an i.i.d. process with finite variance, Bartlett’s
result simplifies for each i # 0

Testing Temporal
Dependence

. . 1
pR) ~N(O, ).

This suggests a diagnostic for i.i.d. noise:

1. Plot the lag h versus the sample ACF j(h)

2. Draw two horizontal lines at i% (blue dashed lines in
R)

3. About 95% of the {5(h): h =1,2,3,---} should be within
the lines if we have i.i.d. noise



The Portmanteau Test [Box and Pierce, 1970] for i.i.d. Noise ST
Processes
0%
. 3
Suppose we wish to test: CiLEMS‘ N

Hy: {m,n2, -, mr} is an i.i.d. noise sequence
H1 . HO |S false Testing Temporal

Dependence

@ Under Hg, .

. . 1,4

@ Hence i
Q=T Z ﬁQ(h) ~ XZf:k
=1

@ We reject Hy if Q > x2(1 - «), the 1 - « quatile of the
chi-squared distribution with k£ degrees of freedom



Ljung-Box Test [Ljung and Box, 1978] S Lnear
Processes
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Ljung and Box [1978] showed that

Testing Temporal
2 Dependence
(h) . 2
~ X
T-h

Rl

k
Qr=T(T-2) ),
h=1

The Ljung-Box test can be more powerful than the
Portmanteau test

Both the Portmanteau Test (aka Box-Pierce test) and
Ljung-Box test can be carried out in R using the function
Box.test



Stationary processes

Examples in R and Linear
> Box.test(rnorm(100), 20) Processes
CLEMS@N

UNTVERSITY

Box-Pierce test

data . rno r'm(j-@@) Testing Temporal
X-squared = 12.197, df = 20, p-value = 0.9091 PLECIESIE

> Box.test(LakeHuron, 2@)
Box-Pierce test

data: LakeHuron
X-squared = 182.43, df = 20, p-value < 2.2e-16

> Box.test(LakeHuron, 20, type = "Ljung")
Box-Ljung test

data: LakeHuron
X-squared = 192.6, df = 20, p-value < 2.2e-16



i Stati
Linear Processes e Lincar

Processes

@ A time series {n;} is a linear process with mean . if we
can write it as

e =W + Z 1/}] Zja Vt’ Linear Processes

j==oo

where p is a real-valued constant, {Z;} is a WN(0, 0%)
process and {1; } is a set of absolutely summable
constants’

@ Absolute summability of the constants guarantees that the
infinite sum converges

TA set of real-valued constants {1, : j € Z} is absolutely summable if
Z;‘;_w ‘wﬂ < oo 4.15



Example: Moving Average Process of Order ¢, MA(g) ST

Processes
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Let {Z;} be a WN(0,o?) process. For an integer ¢ > 0 and
constants 6,,---, 6, with 8, # 0, define

Linear Processes

Nt = Zt + 91Zt—1 + e+ qut—q
= GOZt + 91215,1 + e+ ant—q

q
= Z ath—j’
j=0

where we let 0y =1

{n:} is known as the moving average process of order ¢, or the
MA(q) process, and, by definition, is a linear process



Defining Linear Processes with Backward Shifts S Lnear

Processes
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@ Recall the backward shift operator, B, is defined by
Bny =nt1

Linear Processes

@ We can represent a linear process using the backward
shift operator as n; = u + ¥(B)Z;, where we let

Y(B) = X3 o ;B
@ Example: we can write a mean zero MA(1) process as
ne=p+P(B)Z,

where p=0and ¢(B) =1+6B



Linear Filtering Preserves Stationarity S Lnear

Processes

o Let {Y;} be atime series and {v; } be a set of absolutely
summable constants that does not depend on time
@ Definition: A linear time invariant filtering of {Y;} with Linear Processes

coefficients {1;} that do not depend on time is defined by

Xi = z/J(B)Yt

@ Theorem: Suppose {Y;} is a zero mean stationary series
with ACVF 4y (-). Then {X,} is a zero mean stationary
process with ACVF

o5} (o]

yx(h)= 3 > Yty (j-k+h)

j=—00 k=-o00



Stationary processes

Example: The MA(q) Process is Stationary Sndlinear

Processes

By the filtering preserves stationarity result, the MA(q) process
is a stationary process with mean zero and ACVF

’7(h Z 0; 9]+h

Linear Processes



Stationary processes

Example: The MA(q) Process is Stationary Sndlinear

Processes

By the filtering preserves stationarity result, the MA(q) process
is a stationary process with mean zero and ACVF

’7(h Z 0; 9]+h

Linear Processes

q
v(h) = Y 0i0kvz(j —k+h)
j=0 k=0
9 4a
=0” > > 0;0k1(k=3j+h)
5=0 k=0
9 q
=0 29 9j+h

0

J



Stationary processes

Processes with a Correlation that Cuts Off e

Processes

@ Atime series 1, is ¢g-correlated if
ne and 7, are uncorrelated V|t - s| > g,
i.e., Cov(m,ms) =0,V|t—s|>q MA(g) and AR(p)

Processes

o Atime series {n;} is ¢-dependent if
n; and 7, are independent V|t — s| > q.
@ Theorem: if {n;} is a stationary ¢-correlated time series

with zero mean, then it can be always be represented as
an MA(q) process



Stationary processes

The autoregressive process of order p, AR(p) and Linear

Processes

CLEMS@®N
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@ This process is attributed to George Udny Yule. The AR(1)
process has also been called the Markov process

o Let {Z;} be a WN(0,0?) process and let {¢1,-, ¢, } be a
set of constants for some integer p > 0 with ¢, # 0 MA(q) and AR(p)

Processes

@ The AR(p) process is defined to be the solution to the
equation

p p
M= GiM—j+Ze =N — Y. Gili—j = Zu,
i1 i1

&(B)ne

where we let ¢(B) =1-%7_, ¢; B/



A Stationary Solution for AR(1) S Lnear

Processes

@ We want the solution to the AR equation to yield a PELYER ST
stationary process. Let’s first consider AR(1). We will
demonstrate that a stationary solution exists for |¢;| < 1.
o We first write
MA(q) and AR(p)

Processes

Ny = P1Me-1 + Zy = ¢1(p11e—2 + Zy—1) + Z4
= ¢?77t—2 + P12 + 2y

k-1
= Py, + > ¢ Z;
=0

=27
§=0



AR(1) Example Contd S ond Linear o~

Processes

@ Now let 1; = ¢1. We then have CLEMS®N

UNTVERSITY

M= 0jZj.
=0

Using the fact that, for |a| < 1, ¥52, o’ = {1, the sequence
{1} is absolutely summable

MA(q) and AR(p)
Processes

@ Thus, since {n,} is a linear process, it follows by the
filtering preserves stationarity result that {r,} is a zero
mean stationary process with ACVF

8

'Y(h) = Z_:¢ "/’j+h

3=0

- 2 Z Sl

J=0

8

2gh fj(as?)j
j=0



AR(1) Example Cont’d

Now |¢1] < 1 implies that |¢?| < 1 and therefore we have

2 1h
QR
1

When |¢1| > 1
@ No stationary solutions exist for |¢;] = 1
@ When |¢1] > 1, dividing by ¢, for both sides we get
Gy e = o1 + 01 Ze
= N1 = 1 - 67 2

A linear combination of future Z,’s = we have a stationary
solution, but, n; depends on future {Z, }’'s—This process is

said to be not causal

o If we assume that n, and Z, are uncorrelated for each ¢ > s,
|¢1| < 1 is the only stationary solution to the AR equation

Stationary processes
and Linear
Processes

CLEMS@®N

UNTVERSITY

MA(q) and AR(p)
Processes



Stationary processes

The Autoregressive Operator and Linear

Processes

@ AR(1) process
m=dima+Ze= (1=61B)n=Z=m=(1-¢1B)"Z
@ Recall ¥32a’ = 1. = (1-a)™'. We have [
=Y (61B) %= 3 1B 7 = Z¢ Zry
=0 j=0

= This is another way to show that AR(1) is a linear
process

@ Here 1 - ¢, B is the AR characteristic polynomial



The Second-Order Autoregressive Process S”“"gﬁ?ﬁ?ﬁf
Now consider the series satisfying
Ne = P1Me-1 + P22 + Zy,
where, again, we assume that Z, is independent of 7;_1,7;_2, - e
(g) and AR(p

Processes

@ The AR characteristic polynomial is

¢(B) =1~ 1B - $2B*

@ The corresponding AR characteristic equation is

6(B) =1-61B-:B” =0



Stationary processes

Stationarity of the AR(2) Process Sndlinear

Processes

CLEMS@®N
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@ A stationary solution exists if and only if the roots of the
AR characteristic equation exceed 1 in absolute value

@ For the AR(2) the roots of the quadratic characteristic
equation are MA(q) and AR(p)

Processes
P1 £ /07 — 4o
—2¢2

These roots exceed 1 in absolute value if
Gr+da<l, ¢a—-¢d1 <1, and|gpy <1
@ We say that the roots should lie outside the unit circle in

the complex plane. This statement will generalize to the
AR(p) case



Stationary processes

The Autocorrelation Function for the AR(2) Process e

Processes
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@ Yule-Walker equations:

Ne = G1Me—1 + P22 + Zy
e ¢177t—177t—h N ¢277t—277t—h " Ztnt_h MA(q) and AR(p)
= ’Y(h) = ¢1’Y(h - 1) + ¢2’Y(h — 2) Processes
= p(h) = p1p(h—1) + p2p(h -2),
h=1,2,-
@ Setting h = 1, we have

p(1) = $1 p(0) +a p(-1) = p(1) = 12~

—— — 2
-1 =p(1)

— o)+ 2
© p(2) = 61p(1) + 620(0) =



The Variance for the AR(2) Model ST

Processes
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Taking the variance of both sides of AR(2) equations:

Nt = P17e—1 + Pami—2 + Zy,
yields

MA(q) and AR(p)
Processes

7(0) = Var (¢11m4-1 + pami—2) + Var(Zy)
= (67 + ¢3)7(0) +2¢1927(1) + 0

= (82 + 62)1(0) + 2162 (‘MO))

_ (1-¢3)0?
(1= ¢2)(1 - ¢ — $3) — 20267

=(1;Z2)(1—¢Z;—




Stationary processes

The General Autoregressive Processes T
: : !
Consider now the pth-order autoregressive model:

CLEMS@N
N = G1M—1 + P2M—2 + -+ + PpM—p + 4 R
@ AR characteristic polynomial:
¢(B) =1~ 1B~ 2B~ ~ ¢, B
AR characteristic equation:
1= ¢1B - ¢3B% — -~ ¢, BP = 0 e

@ Yule-Walker equations:

p(1) = @1+ gap(1) + -+ ¢pp(p 1)
p(2) = p1p(1) + o + -+ dpp(p - 2)

p(p) = p1p(p=1) + pap(p=2) + -+ ¢
@ Variance:

7(0) = p1y(1) + oy (2) + -+ + dpy(p) + 02

02

1= ¢1p(1) == dpp(p)

4.30
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