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5.3

ARMA(p, q) Processes

{ηt} is an ARMA(p, q) process if it satisfies

ηt −
p

∑
i=1
φiηt−i = Zt +

q

∑
j=1

θjZt−j ,

where {Zt} is a WN(0, σ2) process.

Let φ(B) = 1 −∑
p
i=1 φiB

i and θ(B) = 1 +∑
q
j=1 θjB

j . Then
we can write it as

φ(B)ηt = θ(B)Zt

An ARMA(p, q) process {η̃t} with mean µ can be written as

φ(B)(η̃t − µ) = θ(B)Zt
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5.4

A Stationary Solution to the ARMA Equation

A zero-mean ARMA process is stationary if it can be written as
a linear process, i.e., ηt = ψ(B)Zt, where ψ(B) = ∑

∞
j=−∞ ψjB

j

for an absolutely summable sequence {ψj}

This only happens if one can “divide” by φ(B), i.e., it is
stationary only if the following makes senese:

(φ(B))
−1
φ(B)ηt = (φ(B))

−1
θ(B)Zt

Let’s forget about B is the backshift operator and replace it
with z. Now consider whether we can divide θ(z) by φ(z)
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5.5

The Roots of AR Characteristic Polynomial and Stationarity

A root of the polynomial f(z) = ∑p
j=0 ajz

j is a value ξ such
that f(ξ) = 0⇒ it can be real-valued R or complex-valued
C

For example, a root can take the form ξ = a + b i for real
number a and b. The modulus of a complex number ∣ξ∣ is
defined by

∣ξ∣ =
√
a2 + b2

For any ARMA(p,q) process, a stationary and unique
solution exists if and only if

φ(z) = 1 − φ1z −⋯ − φpz
p
≠ 0,

for all ∣z∣ = 1.

Note: Stationarity of the ARMA process has nothing to do
with the MA polynomial!
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5.6

AR(4) Example

Consider the following AR(4) process

ηt = 2.7607ηt−1 − 3.8106ηt−2 + 2.6535ηt−3 − 0.9238ηt−4 +Zt,

the AR characteristic polynomial is

φ(z) = 1 − 2.7607z + 3.8106z2 − 2.6535z3 + 0.9238z4

Hard to find the roots of φ(z) –we use the polyroot
function in R:

Use Mod in R to calculate the modulus of the roots

Conclusion:
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5.7

Causal ARMA Processes

An ARMA process is causal if there exists constants {ψj} with
∑
∞
j=0 ∣ψj ∣ < 0 and ηt = ∑∞j=0 ψjZt−j , that is, we can write {ηt} as

an MA(∞) process depending only on the current and past
values of {Zt}

Equivalently, an ARMA process is causal if and only if

φ(z) = 1 − φ1z −⋯ − φpz
p
≠ 0,

for all ∣z∣ ≤ 1

The previous AR(4) example is causal since each zero, ξ,
of φ(⋅) is such that ∣ξ∣ > 1
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5.8

Invertible ARMA Processes
An ARMA process is invertible if there exists constants {πj}
with ∑∞j=0 ∣πj ∣ < ∞ and

Zt =
∞
∑
j=0

πjηt−j ,

that is, we can write {Zt} as an AR(∞) process depending only
on the current and past values of {ηt}

A process is invertible if and only if

θ(z) = 1 + θ1z +⋯ + θqz
q
≠ 0,

for all ∣z∣ ≤ 1

An ARMA process

φ(B)ηt = θ(B)Zt,

with φ(z) = 1− 0.5z and θ(z) = 1+ 0.4z has a root of the MA
characteristic polynomial at z = −1

0.4
= −2.5
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5.9

Partial Autocorrelation Functions (PACF)

The partial autocorrelation function (PACF) represents the
partial correlation of a stationary time series {ηt} with its own
lagged values, while regressing out the effects of the time
series at all shorter lags

PACF of lag h is the autocorrelation between ηt and ηt+h
with the linear dependence between ηt and ηt+1,⋯, ηt+h−1
removed

PACF plots are a commonly used tool for identifying the
order of an AR model, as the theoretical PACF “shuts off”
past the order of the model

One can use the function pacf in R to plot the PACF plots
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5.10

An Example of PACF Plot
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5.11

Lake Huron Series PACF Plot
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5.12

PACF Plot for a MA Process
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5.13

PACF Plot for a ARMA Process
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5.14

Identifying Plausible Stationary ARMA Models

We can use the sample ACF and PACF to help identify
plausible models:

Model ACF PACF
MA(q) cuts off after lag q tails off exponentially
AR(p) tails off exponentially cuts off after lag p

For ARMA(p, q) we will see a combination of the above
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5.15

Estimation of the ARMA Process Parameters

Suppose we choose a ARMA(p, q) model for {ηt}

Need to estimate the p + q + 1 parameters:

AR component {φ1,⋯, φp}

MA component {θ1,⋯, θq}

Var(Zt) = σ
2

One strategy:

Do some preliminary estimation of the model parameters
(e.g., via Yule-Walker estimates)

Follow-up with maximum likelihood estimation with
Gaussian assumption
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5.16

The Yule-Walker Method

Suppose ηt is a causal AR(p) process

ηt − φ1ηt−1 −⋯ − φpηt−p = Zt

To estimate the parameters {φ1,⋯, φp}, we use a method of
moments estimation scheme:

Let h = 0,1,⋯, p. We multiply ηt−h to both sides

ηtηt−h − φ1ηt−1ηt−h −⋯ − φpηt−pηt−h = Ztηt−h

Taking expectations:

E(ηtηt−h) − φ1E(ηt−1ηt−h) −⋯ − φpE(ηt−pηt−h) = E(Ztηt−h),

we get

γ(h) − φ1γ(h − 1) −⋯ − φpγ(h − p) = E(Ztηt−h)
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5.17

The Yule-Walker Equations

When h = 0, E(Ztηt−h) = Cov(Zt, ηt) = σ
2 (Why?)

Therefore, we have

γ(0) −
p

∑
j=1

φjγ(j) = σ
2

When h > 0, Zt is uncorrelated with ηt−h (because the
assumption of causality), thus E(Ztηt−h) = 0 and we have

γ(h) −
p

∑
j=1

φjγ(h − j) = 0, h = 1,2,⋯, p

The Yule-Walker estimates are the solution of these
equations when we replace γ(h) by γ̂(h)
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5.18

The Yule-Walker Equations in Matrix Form

Let φ̂ = (φ̂1,⋯, φ̂p)
T be an estimate for φ = (φ1,⋯, φp)

T and let

Γ̂ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

γ̂(0) γ̂(1) ⋯ γ̂(p − 1)
γ̂(1) γ̂(0) ⋯ γ̂(p − 2)
⋮ ⋮ ⋱ ⋮

γ̂(p − 1) γ̂(p − 2) ⋯ γ̂(0)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Then the Yule-Walker estimates of φ and σ2 are

φ̂ = Γ̂−1γ̂,

and
σ̂2

= γ̂(0) − φ̂T γ̂,

where γ̂ = (γ̂(1),⋯, γ̂(p))
T
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5.19

Lake Huron Example in R
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5.20

Remarks on the Yule-Walker Method

For large sample size, Yule-Walker estimator have
(approximately) the same sampling distribution as
maximum likelihood estimator (MLE), but with small
sample size Yule-Walker estimator can be far less efficient
than the MLE

The Yule-Walker method is a poor procedure for
ARMA(p,q) processes with q > 0

We move on the more versatile and popular method for
estimating ARMA(p,q) parameters–maximum likelihood
estimation
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5.21

Maximum Likelihood Estimation

The setup:

Model: X = (X1,X2,⋯,Xn) has joint probability density
function f(x∣ω) where ω = (ω1, ω2,⋯, ωp) is a vector of p
parameters

Data: x = (x1, x2,⋯, xn)

The likelihood function is defined as the the “likelihood” of
the data, x, given the parameters, ω

Ln(ω) = f(x∣ω)

The maximum likelihood estimate (MLE) is the value of ω
which maximizes the likelihood, Ln(ω), of the data x:

ω̂ = argmax
ω

Ln(ω).

It is equivalent (and often easier) to maximize the log
likelihood,

`n(ω) = logLn(ω)
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5.22

The MLE for an i.i.d. Gaussian Process
Suppose {Xt} be a Gaussian i.i.d. process with mean µ and
variance σ2. We observe a time series x = (x1,⋯, xn)

T .

The likelihood function is

Ln(µ,σ
2
) = f(x∣µ,σ2

)

=
n

∏
t=1
f(xi∣µ,σ)

=
n

∏
t=1

{
1

√
2πσ2

exp [−
(xt − µ)

2

2σ2
]}

= (2π)−n/2(σ2
)
−n/2 exp [−

∑
n
t=1(xt − µ)

2

2σ2
]

The log-likelihood function is

`n(µ,σ
2
) = logLn(µ,σ

2
)

= −
n

2
log(2π) −

n

2
log(σ2

) −
∑

n
t=1(xt − µ)

2

2σ2
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5.23

Likelihood for Stationary Gaussian Time Series Models

Suppose {Xt} be a mean zero stationary Gaussian time series
with ACVF γ(h). If γ(h) depends on p parameters,
ω = (ω1,⋯, ωp)

The likelihood of the data x = (x1,⋯, xn) given the
parameters ω is

Ln(ω) = (2π)−n/2∣Γ∣
−1/2 exp(−

1

2
xTΓ−1x) ,

where Γ is the covariance matrix of X = (X1,⋯,Xn)
T , ∣Γ∣

is the determinant of the matrix Γ, and Γ−1 is the inverse
of the matrix Γ

The log-likelihood is

`n(θ) = −
n

2
log(2π) −

1

2
log ∣Γ∣ −

1

2
xTΓ−1x
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5.24

Decomposing Joint Density into Conditional Densities

A joint distribution can be represented as the product of
conditionals and a marginal distribution

The simple version for n = 2 is:

f(x1, x2) = f(x2∣x1)f(x1)

Extending for general n we get the following expression for
the likelihood:

Ln(ω) = f(x∣ω) = f(x1)
n

∏
t=2
f(xt∣xt−1,⋯, x1;ω),

and the log-likelihood is

`n(ω) = log f(x∣ω) = log(f(x1))+
n

∑
t=2

log f(xt∣xt−1,⋯, x1,ω).
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5.25

Simplifying the Likelihood Calculation

Let the best linear one-step predictor of Xt be

X̂t = {
0, t = 1;

Pt−1Xt, t = 2,⋯, n

The one-step prediction errors or innovations are defined

Ut =Xt − X̂t, t = 1,⋯, n,

and the associated mean squared error is

νt−1 = E [(Xt − X̂t)
2] = E(U2

t ), t = 1,⋯, n.

For a causal ARMA process we can write νt−1 = σ2rt−1,
where rt and Ut only depends on the AR and MA
parameters φ and θ, but not σ2
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5.26

Working with the Innovations
Result I: {Ut} is an independent set of RVs with

Ut ∼ N(0, νt−1), t = 1,⋯, n

⇒ the one-step prediction errors are uncorrelated with one
another, and each each a normal distribution

Result II: The likelihoods are the same if we use a model
based on realizations of {Xt} or a model based on
realizations of {Ut}

Therefore

`n(ω) = −
n

2
log(2π) −

1

2

n

∑
i=1

log(νt−1) −
1

2

n

∑
t=1

(
u2t
νt−1

) .

For a causal ARMA process this becomes

`n(φ,θ, σ
2
) = −

n

2
log(2π) −

n

2
log(σ2

) −
1

2

n

∑
t=1

log(rt−1)

−
1

2σ2

n

∑
t=1

(
u2t
rt−1

)
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5.27

The MLEs of σ2, φ, and θ

Now take the derivative of `n with respect to σ2, setting the
derivative equal to zero and solving for σ2 ⇒

σ̂2
=
S(φ,θ)

n
,

where

S(φ,θ) =
n

∑
t=1

(
u2t
rt−1

) .

Substituting σ̂2 into `n, the MLE estimates of φ and θ,
denoted by φ̂ and θ̂, respectively, are those values which
maximize

˜̀
n(φ,θ, σ̂

2
) = −

n

2
log(

S(φ,θ)

n
) −

1

2

n

∑
t=1

log(rt−1)
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5.28

What About Non-Gaussian Processes?

Not as easy to express the joint distribution of {Xt} if the
process is not Gaussian, instead consider the Gaussian
likelihood as an approximate likelihood

In practice:

Transform the data to make the series “as Gaussian” as
possible

Then use the Gaussian likelihood to estimate the
parameters of interest
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5.29

Inference for the ARMA Parameters

Motivating example: What is an approximate 95% CI for φ1
in an AR(1) model?

Let φ = (φ1,⋯, φp) and θ = (θ1,⋯, θq) denote the ARMA
parameters (excluding σ2), and let φ̂ and θ̂ be the ML
estimates of φ and θ. Then for “large” n, (φ̂, θ̂) have
approximately a joint normal distribution:

[
φ̂

θ̂
]
⋅
∼ N([

φ
θ
] ,
V (φ,θ)

n
)

V (φ,θ) is a known (p + q) × (p + q) matrix depending on
the ARMA parameters
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5.30

V (φ,θ) for AR Processes

For an AR(p) process

V (φ) = σ2Γ−1,

where Γ is the p × p covariance matrix of the series
(X1,⋯,Xp)

AR(1) process:
V (φ1) = 1 − φ21

AR(2) process:

V (φ1, φ2) = [
1 − φ22 −φ1(1 + φ2)

−φ1(1 + φ2) 1 − φ22
]
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5.31

Other Examples of V (φ,θ)

MA(1) process:
V (θ1) = 1 − θ21

MA(2) process:

V (θ1, θ2) = [
1 − θ22 θ1(1 − θ2)

θ1(1 − θ2) 1 − θ22
]

Casual and invertible ARMA(1,1) process

V (φ, θ) =
1 + φθ

(φ + θ)2
[
(1 − φ2)(1 + φθ) −(1 − φ2)(1 − θ2)
−(1 − φ2)(1 − θ2) 1 − θ22

]

More generally, for “small” n, the covariance matrix of
(φ̂, θ̂) can be approximated by using the second
derivatives of the log-likelihood function
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5.32

Assessing Fit / Comparing Different Time Series Models

We can use diagnostic plots for the “residuals” of the fitted
time series, along with Box tests to assess whether an
i.i.d. process is reasonable

Use confidence intervals for the parameters. Intervals that
contain zero may indicate that we can simplify the model

We can also use model selection criteria, such as AIC, to
compare between different models
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5.33

Diagnostics via the Time Series Residuals

Recall the innovations are given by

Ut =Xt − X̂t

Under a Gaussian model, {Ut ∶ t = 1,⋯, n} is an
independent set of RVs with

Ut ∼ N(0, νt−1)
d
= σN(0, rt−1).

Define the residuals {Rt} by

Rt =
Ut

√
rt−1

=
Xt − X̂t
√
rt−1

Under Gaussian model Rt
i.i.d
∼ N(0, σ2)
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5.34

ARMA Order Selection

We would prefer to use models that compromise between
a small residual error σ̂2 and a small number of
parameters (p + q + 1)

To choose the order (p and q) of ARMA model it makes
sense to penalize models with a large number of
parameters

Here we consider an information based criteria to compare
models



Autoregressive-
Moving Average

Model I

Autoregressive-Moving
Average Model:
Stationarity, Causality,
and Invertibility

Partial Autocorrelation
Functions

Parameter Estimation

5.35

Akaike Information Criterion (AIC)

The Akaike information criterion (AIC) is defined by

AIC = −2`n(φ̂, θ̂, σ̂
2
) + 2(p + q + 1)

We choose the values of p and q that minimizes the AIC
value

For AR(p) models, AIC tends to overestimate p. The bias
corrected version is

AICC = 2`n(φ̂, θ̂, σ̂
2
) +

2n(p + q + 1)

(n − 1) − (p + q + 1)
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