Autoregressive-
Moving Average
Model |

Lecture 5 CLEMS@N

Autoregressive-Moving Average
Model |

Readings: CC08 Chapter 4.4-4.6, 7.1, 7.3, 7.4; BD16 Chapter
2.3, 3.1-3.2; SS17 Chapter 3.1-3.3, 3.5

MATH 8090 Time Series Analysis
Week 5

Whitney Huang
Clemson University



Agenda

ﬂ Autoregressive-Moving Average Model: Stationarity,
Causality, and Invertibility

@ Partial Autocorrelation Functions

e Parameter Estimation




ARMA(p, q) Processes putregressie

Model |

CLEMS@®N

UNTVERSITY

{n:} is an ARMA(p, q) process if it satisfies

Autoregressive-Moving
Average Model
Stationarity, Causality,

p q
- Z ¢int—i = Zt + Z eth—_j7 and Invertibility

i=1 j=1

where {Z;} is a WN(0, 0%) process.

o Letp(B)=1-%,¢;B and 6(B) =1+%9_, 0;B’. Then
we can write it as

¢(B)ny =0(B)Z;
@ An ARMA(p, q) process {7j; } with mean p can be written as

¢(B) (7 = p) = 0(B) Z
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A Stationary Solution to the ARMA Equation el

Moving Average
Model |
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A zero-mean ARMA process is stationary if it can be written as &0

a linear process, i.e., 1, = 1(B)Z;, where ¢:(B) = 2 _, 1; B vt mvertoiy
for an absolutely summable sequence {v;}

@ This only happens if one can “divide” by ¢(B), i.e., itis
stationary only if the following makes senese:

(¢(B)) " (B = (6(B)) ™ 0(B)Z,

@ Let’s forget about B is the backshift operator and replace it
with z. Now consider whether we can divide 6(z) by ¢(z)



The Roots of AR Characteristic Polynomial and Stationarity Moving Average

Model |

@ A root of the polynomial f(z) = ¥%_, a2’ is avalue ¢ such ~ CLEMOS@N
that f(£) = 0 = it can be real-valued R or complex-valued N )
utoregressive-iioving

C Average Model
Stationarity, Causality,
and Invertibility

@ For example, a root can take the form & = a + b1 for real
number a and b. The modulus of a complex number |¢] is

defined by
€ = Va2 + 22

@ For any ARMA(p,q) process, a stationary and unique
solution exists if and only if

() = 1= g1z == 62" %0,
forall |z| = 1.

Note: Stationarity of the ARMA process has nothing to do
with the MA polynomial!
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AR(4) EXampIe Autoregressive-

Moving Average
Model |
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Consider the following AR(4) process B

Autoregressive-Moving
Average Model

e = 2.76071_1 — 3.81067,_2 + 2.65351;_3 — 0.9238n,_4 + Zy, Statonaty, Causaly

and Invertibility

the AR characteristic polynomial is

#(z) =1-2.7607z + 3.81062° - 2.65352> + 0.92382"

@ Hard to find the roots of ¢(z) —we use the polyroot
function in R:

@ Use Mod in R to calculate the modulus of the roots

@ Conclusion:
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Autoregressive-

Causal ARMA Processes Terin ACEaD
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An ARMA process is causal if there exists constants {¢,} with PG

Average Model

Yicolil <0and n, = X202, that is, we can write {1, } as Stationarty, Causally,
an MA(oo) process depending only on the current and past ey
values of {Z;}

@ Equivalently, an ARMA process is causal if and only if

P(2) =1-¢1z— = p2" 20,

forall 2] <1

@ The previous AR(4) example is causal since each zero, &,
of ¢(-) is such that |¢] > 1



Autoregressive-

Invertible ARMA Processes Auncrogressive
An ARMA process is invertible if there exists constants {r;} o

oo CLEMS@N
with Zj:O |7Tj| < o0 and TN T VERS I TY
0o Autoregressive-Moving
Z Average Model
= . . Stationarity, Causality,
t Z% Tr] nt—-] ? and Invertibility
j=

that is, we can write {Z;} as an AR(o0) process depending only
on the current and past values of {n;}

@ A process is invertible if and only if
0(z) =1+012+--+0,27 0,

forall 2] <1

@ An ARMA process
¢(B)n: = 0(B)Zt,

with ¢(2z) =1-0.5z and 6(z) = 1+ 0.4z has a root of the MA

characteristic polynomial at = = 0%1 =-25



Partial Autocorrelation Functions (PACF) e
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The partial autocorrelation function (PACF) represents the I
partial correlation of a stationary time series {n; } with its own
lagged values, while regressing out the effects of the time
series at all shorter lags Partial Autocorrelation

Functions

@ PACF of lag h is the autocorrelation between 7; and 7,5,
with the linear dependence between 1, and 1.1, -+, Jen-1
removed

@ PACF plots are a commonly used tool for identifying the
order of an AR model, as the theoretical PACF “shuts off”
past the order of the model

@ One can use the function pacf in R to plot the PACF plots

5.9



An Example of PACF Plot ST

Moving Average
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Lake Huron Series PACF Plot CEEETEEE

Moving Average
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PACF Plot for a MA Process PRt

Moving Average
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PACF Plot for a ARMA Process
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Identifying Plausible Stationary ARMA Models

We can use the sample ACF and PACF to help identify
plausible models:

Model | ACF
MA(q) | cuts off after lag ¢
AR(p) | tails off exponentially

| PACF

tails off exponentially
cuts off after lag p

For ARMA(p, q) we will see a combination of the above

i HH
oo 11 HHTI:-I-....... ''''' Al_l-H' ffffffffffffffff
o e— i

Autoregressive-
Moving Average
Model |

CLEMS®N

N I VERS I TY

Partial Autocorrelation
Functions



Autoregressive-

Estimation of the ARMA Process Parameters Moving/Average

Model |

c'g
Suppose we choose a ARMA(p, ¢) model for {n,} M\I
@ Need to estimate the p + ¢ + 1 parameters:
° AR Component {¢17 ) ¢P} Parameter Estimation

o MA component {61,--,0,}

o Var(Z;) = o®

@ One strategy:

o Do some preliminary estimation of the model parameters
(e.g., via Yule-Walker estimates)

e Follow-up with maximum likelihood estimation with
Gaussian assumption



The Yule-Walker Method T s

Model |

Suppose 7, is a causal AR(p) process CLEMS@N

UNTVERSITY

e — ¢177t—1 - ¢p77t7p =7

To estimate the parameters {¢1, -, ¢, }, we use a method of
moments estimation scheme:

Parameter Estimation

o Leth=0,1,---,p. We multiply n,_;, to both sides

NeNi—h = P1Ne1M-h — =~ GPpMi—pNe-h = ZiNt-h

@ Taking expectations:

E(nmtfh) ~ 0 EMe-1me-n) = = ¢pE(77t—p77t—h) =E(Zini-n),

we get

Y(h) = p1y(h=1) = = ¢py(h = p) = E(Zim1-1)



Autoregressive-

The Yule'Walker EquatlonS Moving Average
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@ When h =0, E(Zin;_1) = Cov(Zs, 1) = 02 (Why?)
Therefore, we have

Parameter Estimation

+(0) - z 617(f) = o

@ When h >0, Z; is uncorrelated with n;_;, (because the
assumption of causality), thus E(Z;n;_1,) = 0 and we have

p
7(h)—z¢37(h—j)=0, h:1727"'7p
7=1

@ The Yule-Walker estimates are the solution of these
equations when we replace (k) by 5(h)



The Yule-Walker Equations in Matrix Form AT
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Let ¢ = (¢1,-, b,)T be an estimate for ¢ = (¢4, ¢,)T and let

4(0) (1) - Ap-1)
s | AW A0 - -2) b
- : : . Parameter Estimation
ylp-1) 4-2) - 4(0)
Then the Yule-Walker estimates of ¢ and o2 are
¢=T"'%,

and A
5% =43(0) - "4,

where 4 = (3(1),--,4(p))"



Lake Huron Example in R el

Moving Average

o {r} Model |
YW_est <- ar(lmS$residuals, aic = , order.max = 2, method = "yw")

o
# plot sample and estimated acf/pacf CLEMS“‘N
barClas = 1, mgp = c(2, 1, @), mar = c(3.6, 3.6, 0.6, 0.6), mfrow = c(2, 1)) LN IVERS I TY
acf(lm$residuals)

acf_YWest <- ARMAacf(ar = YW_est$ar, lag.max = 23)
points(@:23, acf_YWest, col = "red", pch = 16, cex = 0.8)
pacf(lm$residuals)

pacf_YWest <- ARMAacf(ar = YW_est$ar, lag.max = 23, pacf = 1)
points(1:23, pacf_YWest, col = "red", pch = 16, cex = 0.8)

Parameter Estimation
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Remarks on the Yule-Walker Method A
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@ For large sample size, Yule-Walker estimator have
(approximately) the same sampling distribution as
maximum likelihood estimator (MLE), but with small
sample size Yule-Walker estimator can be far less efficient Parameter Estimation
than the MLE

@ The Yule-Walker method is a poor procedure for
ARMA(p,q) processes with ¢ > 0

@ We move on the more versatile and popular method for
estimating ARMA(p,q) parameters—maximum likelihood
estimation



Autoregressive-

Maximum Likelihood Estimation Terin ACEaD

Model |

@ The setup: CLEMS@®N
e Model: X = (X1, X2,--, X») has joint probability density
function f(z|w) where w = (w1,w2, -, w,) is a vector of p
parameters

o Data: @ = (z1,22, ", Tn)
Parameter Estimation

@ The likelihood function is defined as the the “likelihood” of
the data, x, given the parameters, w

Lp(w) = f(z|w)

@ The maximum likelihood estimate (MLE) is the value of w
which maximizes the likelihood, L, (w), of the data «:

w = argmax L, (w).
w

It is equivalent (and often easier) to maximize the log
likelihood,
ln(w) = log Ly (w)



The MLE for an i.i.d. Gaussian Process

Suppose {X;} be a Gaussian i.i.d. process with mean p and
variance 2. We observe a time series = = (x1,---,,)%.

@ The likelihood function is
Lu(p,0%) = f(|p,0?)
=1/ (@i, o)
t=1

- L ol (z - p)?

t=1 (V2mo? P 202

_ -n -n, Z?:l(xt - M)Q
_(271') /2(0'2) /2€Xp|:—wj|

@ The log-likelihood function is
En(”a 02) = 1Og Ly, (/L, 02)

__n n 2
-5 log(27) - 5 log(o*) - 52

Z?:l («Tt - ,U)Q

Autoregressive-
Moving Average
Model |

CLEMS@®N
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Parameter Estimation



Autoregressive-

Likelihood for Stationary Gaussian Time Series Models Moving Average

Model |

Suppose {X,} be a mean zero stationary Gaussian time series  CLEMS@N
with ACVF ~(h). If v(h) depends on p parameters,
w = (w1, wp)

@ The likelihood of the data « = (z1,--,x,) given the
parameters w is

Parameter Estimation
_ )2 -1/2 1o
Ly (w) = (2m) |0/ exp 5% I'''z|,
where T is the covariance matrix of X = (Xy,---, X,,)7, |T|

is the determinant of the matrix T, and I'"! is the inverse
of the matrix T

@ The log-likelihood is

1 1
0,(0) = —g log(2r) - - log T - J&"T 7'



Autoregressive-

Decomposing Joint Density into Conditional Densities Moving Average

Model |

¥,
A joint distribution can be represented as the product of M\I
conditionals and a marginal distribution
@ The simple version for n = 2 is:
f(xl’ 12) = f(fE2|$1 )f(xl ) Parameter Estimation

@ Extending for general n we get the following expression for
the likelihood:

Ln(w) = f(alw) = f(xl)tfg @i, ariw),

and the log-likelihood is

ln(w) =log f(z|w) = log(f(ﬁvl))Jan: log f(zi|wi-1, -, 21, w).
t=2



Autoregressive-

Slmpllfylng the lee|lh00d Ca|CU|atI0n Moving Average

Model |
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@ Let the best linear one-step predictor of X; be

5 0, t=1;
Xt‘{ PiaXy, t=2,m

Parameter Estimation

@ The one-step prediction errors or innovations are defined
Ut:Xt—Xt, t:1,---7n,
and the associated mean squared error is
Vi1 :E[(Xt—Xt)2] :E(Uf)a t=1,---,n.
@ For a causal ARMA process we can write v,_; = o%r,_1,

where r, and U, only depends on the AR and MA
parameters ¢ and 6, but not o2



Autoregressive-

Worklng Wlth the |nn0V3tIOI‘lS Moving Average
o Result I: {U;} is an independent set of RVs with Hoael!

CLEMS@N
NN(O7Vt_1)’t:1’...7n UNIVERSIITY
= the one-step prediction errors are uncorrelated with one
another, and each each a normal distribution
@ Result Il: The likelihoods are the same if we use a model ParameleEstimaton

based on realizations of {X;} or a model based on
realizations of {U;}

@ Therefore

£u(w) = =3 log(2m) - % 21%(%—1) 2 Z( ] )

For a causal ARMA process this becomes

n n 12
gn(ﬁi)ae,ffz) == 5 log(27f) Y 10%(02) 5 Z IOg(Tt—l)
t=1

20t1 rtl



The MLEs of rT"), O, and 6 aztvti:‘zg;evses:;e

Model |

@ Now take the derivative of ¢, with respect to o2, setting the
derivative equal to zero and solving for o2 =

6'22 S((ﬁva)’

n

Parameter Estimation

where

swo-$(24)

@ Substituting §2 into 4,,, the MLE estimates of ¢ and 6,
denoted by ¢ and 0, respectively, are those values which
maximize

gn(d)aeva-z) = _g log(S(f:e)) - % i log({rtfl)
t=1



What About Non-Gaussian Processes? PRt

Moving Average
Model |
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@ Not as easy to express the joint distribution of {X;} if the
process is not Gaussian, instead consider the Gaussian
likelihood as an approximate likelihood

Parameter Estimation

@ In practice:

o Transform the data to make the series “as Gaussian” as
possible

o Then use the Gaussian likelihood to estimate the
parameters of interest



Inference for the ARMA Parameters A

Model |

@ Motivating example: What is an approximate 95% Cl for ¢
in an AR(1) model?
Qo Le‘t ¢ = (¢1’ (XN ¢p) and 0 = (91, sy aq) denote the ARMA Parameter Estimation

parameters (excluding 0%), and let ¢ and 6 be the ML
estimates of ¢ and 6. Then for “large” n, (¢, 0) have
approximately a joint normal distribution:

i+ (5122)

o V(¢,0)is aknown (p +q) x (p + q) matrix depending on
the ARMA parameters



V(¢,0) for AR Processes

@ For an AR(p) process
V(gp)=0oT",

where I' is the p x p covariance matrix of the series
(X1, X,)

@ AR(1) process:
V(g1) =1-¢7

o AR(2) process:

— b2 _
Voo =| sty lef”

Autoregressive-
Moving Average
Model |

CLEMS@N

UNTVERSITY

Parameter Estimation

5.30



Other Examples of V (¢, 0) Moving Average

Model |

@ MA(1) process: m

V(61)=1-67

@ MA(2) process:

[ 1-63  61(1-6y)
V(91’92)‘[91(1—02) 1-63

:I Parameter Estimation

@ Casual and invertible ARMA(1,1) process

1+¢0 [ (1-¢°)(1+¢0) —(1-¢%)(1-6%)
(p+60)2 [-(1-¢*)(1-6%) 1-63

V(¢7 9) =

@ More generally, for “small” n, the covariance matrix of
(¢, 0) can be approximated by using the second
derivatives of the log-likelihood function

5.31



Assessing Fit / Comparing Different Time Series Models Moving Average

Model |
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@ We can use diagnostic plots for the “residuals” of the fitted
time series, along with Box tests to assess whether an
i.i.d. process is reasonable
> Box.test(YW_est$resid[-(1:2)], type = "Ljung—Box") Parameter Estimation

Box-Ljung test

data: YW_estS$resid[-(1:2)]
X-squared = 0.56352, df = 1, p-value = 0.4528

@ Use confidence intervals for the parameters. Intervals that
contain zero may indicate that we can simplify the model

@ We can also use model selection criteria, such as AlC, to
compare between different models

5.32



Diagnostics via the Time Series Residuals

@ Recall the innovations are given by

Ut:Xt—Xt

@ Under a Gaussian model, {U;:t=1,---,n} is an
independent set of RVs with

Uy ~ N(0,4-1) £ oN(0, 741 ).

@ Define the residuals {R,} by

U XX

Under Gaussian model R, “4? N(0, #2)

Autoregressive-
Moving Average
Model |

CLEMS@N

UNTVERSITY

Parameter Estimation
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ARMA Order Selection Ty e

Model |
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@ We would prefer to use models that compromise between
a small residual error 5% and a small number of
parameters (p+q+ 1)

Parameter Estimation

@ To choose the order (p and ¢) of ARMA model it makes
sense to penalize models with a large number of
parameters

@ Here we consider an information based criteria to compare
models

5.34



Akaike Information Criterion (AIC) Moving Average

Model |
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@ The Akaike information criterion (AIC) is defined by

AIC = -20,(¢,0,6%) +2(p+q+1)
Parameter Estimation

@ We choose the values of p and ¢ that minimizes the AIC
value

@ For AR(p) models, AIC tends to overestimate p. The bias
corrected version is

2n(p+q+1)
(n-1)-(p+q+1)

AICC =20, (9,0,52) +

5.35
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