Lecture 6 Prediction with Stationary Time

Series

Readings: CC08 Chapter 9; BD16 Chapter 2.5 3.3; SS17 Chapter 3.4

MATH 8090 Time Series Analysis Week 6 Prediction with Stationary Time Series

Linear Predictor Prediction Equations Examples

Whitney Huang Clemson University Agenda

Linear Predictor

Case Study

Prediction with Stationary Time Series

inear Predictor

Prediction Equations

Examples

Forecasting Stationary Time Series

Let $\{X_t\}$ be a stationary process with mean μ and ACVF $\gamma(\cdot)$. Based on the observed data, $X_n = (X_1, X_2, \dots, X_n)^T$, we want to forecast X_{n+h} for some h, a positive integer

- Question: What is the best way to do so?
 ⇒ Need to decide on what "best" means
- A commonly used metric for describing forecast performance is the mean square prediction error (MSPE):

$$MSPE = E\left[\left(X_{n+h} - m_n(\boldsymbol{X}_n)\right)^2\right].$$

 \Rightarrow the best predictor (in terms of MSPE) is

$$m_n(\boldsymbol{X}_n) = \mathbb{E}[X_{n+h}|\boldsymbol{X}_n],$$

the conditional expectation of X_{n+h} given X_n

Linear Predictor Prediction Equations Examples

Linear Predictor

Calculating $\mathbb{E}[X_{n+h}|X_n]$ can be difficult in general

 We will restrict to a linear combination of X₁, X₂, ..., X_n and a constant ⇒ linear predictor:

$$P_n X_{n+h} = c_0 + c_1 X_n + c_2 X_{n-1} + \dots + c_n X_1$$
$$= c_0 + \sum_{j=1}^n c_j X_{n+1-j}$$

 We select the coefficients that minimize the *h*-step-ahead mean squared prediction error:

$$\mathbb{E}\left([X_{n+h} - P_n X_{n+h}]^2\right) = \mathbb{E}\left(X_{n+h} - c_0 - \sum_{j=1}^n c_j X_{n+1-j}\right)^2$$

• The best linear predictor is the best predictor if $\{X_t\}$ is Gaussian

Linear Predictor Prediction Equations Examples Case Study

How to Determine these Coefficients $\{c_j\}$?

The steps that we are about to follow to calculate the c_j values are the same as you would use for calculating ordinary least squares estimates

- Take the derivative of the MSPE with respect to each coefficient c_j
- Set each derivative equal to zero
- Solve with respect to the coefficients

Linear Predictor Prediction Equations Examples Case Study

Forecasting Stationary Processes I

For simplicity, let's assume $\mu = 0$ (we can always achieve that by subtracting off μ) so that we don't need the constant term. We have

 $P_n X_{n+h} = c_1 X_n + c_2 X_{n-1} + \dots + c_n X_1.$

We want the MSPE

$$\mathbb{E}\left[\left(X_{n+h} - P_n X_{n+h}\right)^2\right] = \mathbb{E}\left[\left(X_{n+h} - c_1 X_n - c_2 X_{n-1} - \dots - c_n X_1\right)^2\right]$$

as small as possible.

From now on let's definite

$$\mathbb{E}\left[\left(X_{n+h} - c_1 X_n - c_2 X_{n-1} - \dots - c_n X_1\right)^2\right] = S(c_1, \dots, c_n)$$

We are going to take derivative of the $S(c_1, \dots, c_n)$ with respect to each coefficient c_j

inear Predictor

Prediction Equations

Examples

Forecasting Stationary Processes II

S is a quadratic function of c_1, c_2, \dots, c_n , so any minimizing set of c_j 's must satisfy these *n* equations:

$$\frac{\partial S(c_1, \cdots, c_n)}{\partial c_j} = 0, \quad j = 1, \cdots, n.$$

Since $S(c_1, \dots, c_n) = \mathbb{E} \left[(X_{n+h} - c_1 X_n - c_2 X_{n-1} - \dots - c_n X_1)^2 \right]$, we have

$$\frac{\partial S(c_1, \cdots, c_n)}{\partial c_j} = -2\mathbb{E}\left[\left(X_{n+h} - \sum_{i=1}^n c_i X_{n-i+1}\right) X_{n-j+1}\right] = 0$$

$$\Rightarrow \mathbb{Cov}(X_{n+h} - \sum_{i=1}^{n} c_i X_{n-i+1}, X_{n-j+1}) = 0, \quad j = 1, \dots, n$$

⇒ Prediction error is uncorrelated with all RVs used in corresponding predictor

inear Predictor

Prediction Equations

Examples

Forecasting Stationary Processes III

Orthogonality principle:

$$\mathbb{Cov}(X_{n+h} - \sum_{i=1}^{n} c_i X_{n-i+1}, X_{n-j+1}) = 0, \quad j = 1, \cdots, n.$$

We have

$$\mathbb{Cov}(X_{n+h}, X_{n-j+1}) - \sum_{i=1}^{n} c_i \mathbb{Cov}(X_{n-i+1}, X_{n-j+1}) = 0$$

We obtain $\{c_i; i = 1, \dots, n\}$ by solving the system of linear equations:

$$\left\{\gamma(h+j-1) = \sum_{i=1}^{n} c_i \gamma(i-j) : j = 1, \dots, n\right\},\$$

to find n unknown c_i 's

inear Predictor

Prediction Equations

Examples

Computing $P_n X_{n+h}$ via Matrix Operations

We can rewrite the system of prediction equations as

$$\boldsymbol{\gamma}_n$$
 = $\Sigma_n \boldsymbol{c}_n$:

with $\gamma_n = (\gamma(h), \gamma(h+1), \dots \gamma(h+n-1))^T$, $c_n = (c_1, c_2, \dots, c_n)^T$ and

$$\Sigma_n = \begin{bmatrix} \gamma(0) & \gamma(1) & \cdots & \gamma(n-1) \\ \gamma(1) & \gamma(0) & \cdots & \gamma(n-2) \\ \vdots & \vdots & \ddots & \vdots \\ \gamma(n-1) & \gamma(n-2) & \cdots & \gamma(0) \end{bmatrix}$$

is the covariance matrix of $(X_1, X_2, \cdots, X_n)^T$.

Solving for c_n we have

$$\boldsymbol{c}_n$$
 = $\Sigma_n^{-1} \boldsymbol{\gamma}_n$

inear Predictor

Prediction Equations

Examples

Properties of the Prediction Errors

The prediction errors are

l

$$U_{n+h} = X_{n+h} - P_n X_{n+h}$$

= $(X_{n+h} - \mu) - \sum_{j=1}^n c_j (X_{n+1-j} - \mu).$

Prediction Equations

Examples

Case Study

It then follows that

• The prediction error has mean zero

$$\mathbb{E}(U_{n+h}) = \mathbb{E}(X_{n+h} - P_n X_{n+h}) = 0$$

• The prediction error is uncorrelated with all RVs used in the predictor

$$\mathbb{Cov}(U_{n+h}, X_j) = \mathbb{Cov}(X_{n+h} - P_n X_{n+h}, X_j) = 0, \quad j = 1, \cdots, n$$

The Minimum Mean Squared Prediction Error

I

We obtain the minimum value of the MSPE by substituting the expression for c_n into $\mathbb{E}\left[(X_{n+h} - P_n X_{n+h})^2\right]$:

$$MSPE = \mathbb{E} \left[(X_{n+h} - P_n X_{n+h})^2 \right] \\= \mathbb{E} \left[(X_{n+h} - \mu)^2 \right] - 2 \sum_{j=1}^n c_j \mathbb{E} \left[(X_{n+1-j} - \mu) (X_{n+h} - \mu) \right] \\+ \mathbb{E} \left[\sum_{j=1}^n c_j (X_{n+1-j} - \mu) \right]^2 \\= \mathbb{E} \left[(X_{n+h} - \mu)^2 \right] - 2 \sum_{j=1}^n c_j \mathbb{E} \left[(X_{n+1-j} - \mu) (X_{n+h} - \mu) \right] \\+ \sum_{j=1}^n \sum_{k=1}^n c_j c_k \mathbb{E} \left[(X_{n+1-j} - \mu) (X_{n+1-k} - \mu) \right] \\= \gamma(0) - 2 \sum_{j=1}^n c_j \gamma(h+j-1) + \sum_{j=1}^n \sum_{k=1}^n c_j c_k \gamma(k-j) \\= \gamma(0) - 2 c_n^T \gamma_n + c_n^T \Sigma_n c_n.$$

inear Predictor

Prediction Equations

Examples

The Minimum Mean Squared Prediction Error (Cont'd)

From the previous slide we have

$$MSPE = \gamma(0) - 2\boldsymbol{c}_n^T\boldsymbol{\gamma}_n + \boldsymbol{c}_n^T\boldsymbol{\Sigma}_n\boldsymbol{c}_n$$

Recall that $c_n = \sum_n^{-1} \gamma_n$, therefore we have

$$\begin{split} \text{MSPE} &= \gamma(0) - 2\boldsymbol{c}_n^T\boldsymbol{\gamma}_n + \boldsymbol{c}_n^T\boldsymbol{\Sigma}_n\boldsymbol{\Sigma}_n^{-1}\boldsymbol{\gamma}_n \\ &= \gamma(0) - \boldsymbol{c}_n^T\boldsymbol{\gamma}_n \\ &= \gamma(0) - \sum_{j=1}^n c_j\gamma(h+j-1). \end{split}$$

If $\{X_t\}$ is a Gaussian process then an approximate $100(1 - \alpha)$ % prediction interval for X_{n+h} is given by

$$P_n X_{n+h} \pm z_{1-\alpha/2} \sqrt{\text{MSPE}}.$$

inear Predictor

Prediction Equations

Examples

One-Step Ahead Prediction of AR(1) Process

Consider AR(1) process $X_t = \phi X_{t-1} + Z_t$, where $|\phi| < 1$ and $\{Z_t\} \sim WN(0, 1 - \phi^2)$.

• Since
$$\mathbb{V}ar(X_t)$$
 = 1, $\gamma(h)$ = $ho(h)$ = $\phi^{|h|}$

• To forecast X_{n+1} based upon $X_n = (X_1, \dots, X_n)^T$, using best linear predictor $P_n X_{n+1} = c_n^T X_n$, we need to solve $\Sigma_n c_n = \gamma_n$

$$\begin{bmatrix} 1 & \phi & \cdots & \phi^{n-1} \\ \phi & 1 & \cdots & \phi^{n-2} \\ \vdots & \vdots & \cdots & \vdots \\ \phi^{n-1} & \phi^{n-2} & \cdots & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix} = \begin{bmatrix} \phi \\ \phi^2 \\ \vdots \\ \phi^n \end{bmatrix}$$

 \Rightarrow the solution is $c_n = (\phi, 0, \dots, 0)^T$, yielding

 $P_n X_{n+1} = \boldsymbol{c}_n^T \boldsymbol{X}_n = \phi X_n$

Examples

One-Step Ahead Prediction of AR(1) Process (Cont'd)

• ϕX_n makes intuitive sense as a predictor since

$$X_{n+1} = \phi X_n + Z_{n+1}$$

$$\mathbb{Cov}(Z_t, X_{n-j+1}) = 0, j = 1, \cdots, n$$

• MSPE is

$$\operatorname{Vor}(X_{n+1} - \phi X_n) = \gamma(0) - \boldsymbol{c}_n^T \boldsymbol{\gamma}_n = 1 - \phi^2,$$

because \boldsymbol{c}_n = $(\phi, 0, \cdots, 0)^T$ and $\boldsymbol{\gamma}_n$ = $(\phi, \phi^2, \cdots, \phi^n)^T$

inear Predictor

Prediction Equations

Examples

Wind Speed Time Series Example [Source: UW stat 519 lecture notes by Donald Percival]

Wind Speed Time Series {xt} 2 0 ž -2 0.0 -4 20 120 0 40 60 80 100 Time

Let's use this series to illustrate forecasting one step ahead

Stationary Time

Model & Sample ACFs & 95% Confidence Bounds

Model & Sample ACFs & 95% Confidence Bounds 1.0 0.5 Ů0.0 -0.5 IID AR(1) -1.0 0 10 20 30 40 h (lag)

The sample ACF indicates compatibility with AR(1) model $\Rightarrow P_n X_{n+1} = \phi X_n$ Prediction with

Stationary Time

One-Step-Ahead Prediction of Wind Speed Series

One-Step-Ahead Prediction 2 0 0 × 0 -2 00 |¦| õ 0. 00 -4 0 0 0 xt 0 Â, 0 $\dot{x_t} - \hat{x}_t$ 0 20 60 100 120 0 40 80 Time

Prediction with

Stationary Time Series

Predicting "Missing" Values

- Let {X_t} be a stationary process with mean μ and ACVF
 γ(·). Suppose we know X₁ and X₃, and want to predict X₂ using linear combinations of X₁ and X₃
- Solution: To calculate $P_{X_1,X_3}X_2$ we minimize

MSPE =
$$\mathbb{E} \left[(X_2 - P_{X_1, X_3} X_2)^2 \right]$$

= $\mathbb{E} \left[(X_2 - c_0 - c_1 X_3 - c_2 X_1)^2 \right]$

- Proceed as for the forecasting case to get the optimal coefficients:
 - Calculate derivatives
 - Set the derivatives equal to zero
 - Solve the linear system of equation

Linear Predictor
Prediction Equations

Examples

Another AR(1) Example with $\phi = -0.9$

Prediction with Stationary Time Series

Subsampled X_1, X_3, \cdots and Removed X_2, X_4, \cdots

Case Study

The best linear predictor of X_2 given X_1, X_3 is

$$\hat{X}_2 = \frac{\phi}{1+\phi^2} (X_1 + X_3),$$

and the MSPE is

$$\frac{\sigma^2}{1+\phi^2}$$

Predict X_2, X_4, \cdots **Using Best Linear Predictor**

Subsampled and Predicted $\phi = -0.9 \text{ AR}(1) x_1, x_3,...$ 4 2 ×τ Ο • -2 0 20 40 60 80 100 Time

Prediction with

Stationary Time Series

Prediction Errors from Best Linear Predictor

Prediction with Stationary Time Series

inear Predictor

Prediction Equations

Examples

Prediction with Stationary Time Series

inear Predictor

Prediction Equations

Examples

Case Study

A Modeling Case Study of Ireland Wind Data (Courtesy of Peter Craigmile's time series lecture notes)

6.23

Data Description [Haslett & Raftery, 1989]

- 12 wind stations collected 6226 daily readings from 1/1/61 to 1/17/78. The wind speeds are measured in knots (1 knot = 0.5148 meters/second)
- We will focus on the wind data from 1965-1969 at the Rosslare station
- Modeling procedure:
 - Exploratory analysis
 - Model and remove the trend and seasonal components
 - Model identification, fitting, and selection
 - Perform forecast

Wind Speed Time Series at the Rosslare Station

Prediction with Stationary Time Series

Linear Predictor Prediction Equations Examples Case Study

No clear trend

Wind Speed Time Series at the Rosslare Station

- No clear trend
- Seasonal Pattern

Prediction with

Stationary Time Series

Estimating the Season Pattern

Here we fit a harmonic regression to account for the seasonal effects

Prediction with

Linear Predictor Prediction Equations Examples Case Study

ACF Plots: Original and Deseasonalized Series

Prediction with

Apply Transformation to Make Wind Speeds More Gaussian Like

inear Predictor Prediction Equations Examples

6.28

Now take square roots of the original data and deseasonalize again!

Estimating the Seasonal Component of the Transformed Series

Next, we need to check if the deseasonalized series Gaussian like

Prediction with

Stationary Time Series

Marginal Distribution and ACF/PACF of the Deseasonalized Series

Based on ACF/PACF, which ARMA model would you choose?

Prediction with

Stationary Time

Maximum Likelihood Estimation in R: AR(1)

```
> ## Fit an AR(1) model
> ar1.model <- arima(sqrt.rosslare.ds, order = c(1, 0, 0))
> ## summarize the model
> ar1.model
Call:
```

```
arima(x = sqrt.rosslare.ds, order = c(1, 0, 0))
```

Coefficients:

	ar1	intercept
	0.4044	3.3251
s.e.	0.0214	0.0253

Prediction with Stationary Time Series U N I V E R S I T Linear Predictor Prediction Equations Examples Case Study

Residual Plots for the AR(1) Model

Normality assumption seems reasonable.

Next check the ACF/PACF and perform a Box test to assess if the AR(1) fit adequately account for temporal dependence strucuture

Stationary Time

Diagnostic for the AR(1) Model

> Box.test(ar1.resids, lag = 32, type = "Ljung-Box")

data: ar1.resids
X-squared = 53.656, df = 32, p-value = 0.009603

Prediction with

Stationary Time

AR(2) Maximum Likelihood Estimation

```
> ## Fit an AR(2) model
> ar2.model <- arima(sqrt.rosslare.ds, order = c(2, 0, 0))
> ## summarize the model
> ar2.model
```

```
Call:
arima(x = sqrt.rosslare.ds, order = c(2, 0, 0))
```

Coefficients:

	ar1	ar2	intercept
	0.4413	-0.0911	3.3252
s.e.	0.0233	0.0233	0.0231

Prediction with Stationary Time Series U N I V E R S T V Linear Predictor Prediction Equations Examples Case Study

Residual Plots for the AR(2) Model

Normality assumption seems reasonable.

Next check the ACF/PACF and perform a Box test to assess if the AR(2) fit adequately account for temporal dependence strucuture

Stationary Time

Diagnostic for the AR(2) Model

> Box.test(ar2.resids, lag = 32, type = "Ljung-Box")

```
Box-Ljung test
```

data: ar2.resids X-squared = 36.852, df = 32, p-value = 0.2544 Prediction with

Stationary Time Series

ARMA(1, 1) Maximum Likelihood Estimation

```
> ## Fit an ARMA(1,1) model
> arma11.model <- arima(sqrt.rosslare.ds, order = c(1, 0, 1))
> ## summarize the model
> arma11 model
Call:
arima(x = sqrt.rosslare.ds, order = c(1, 0, 1))
Coefficients:
                      intercept
        ar1
                 ma1
      0.1947
             0.2521
                         3.3250
                         0.0233
     0.0556
             0.0553
s.e.
```


Residual Plots for the ARMA(1, 1) Model

Normality assumption seems reasonable.

Next check the ACF/PACF and perform a Box test to assess if the ARMA(1, 1) fit adequately account for temporal dependence strucuture

Diagnostic for the ARMA(1, 1) Model

> Box.test(arma11.resids, lag = 32, type = "Ljung-Box")

data: arma11.resids X-squared = 33.09, df = 32, p-value = 0.4137 Prediction with

ARMA(2, 1) Maximum Likelihood Estimation

```
> ## Fit an ARMA(2,1) model
> arma21.model <- arima(sqrt.rosslare.ds, order = c(2, 0, 1))
> ## summarize the model
> arma21.model
Call:
arima(x = sqrt.rosslare.ds, order = c(2, 0, 1))
Coefficients:
```

	ar1	ar2	ma1	intercept
	0.0674	0.0584	0.3785	3.3247
s.e.	0.1693	0.0772	0.1665	0.0236

sigma² estimated as 0.4107: log likelihood = -1779.66, aic = 3567.32

-xumpies

Residual Plots for the ARMA(2, 1) Model

Normality assumption seems reasonable.

Next check the ACF/PACF and perform a Box test to assess if the ARMA(2, 1) fit adequately account for temporal dependence strucuture

Diagnostic for the ARMA(2, 1) Model

> Box.test(arma21.resids, lag = 32, type = "Ljung-Box")

```
data: arma21.resids
X-squared = 32.537, df = 32, p-value = 0.4404
```

Prediction with

Box-Ljung test

Comparing Models via Information Criteria

Prediction with Stationary Time Series

inear Predictor

Prediction Equations

Examples

Case Study

Model	AIC	AICC
AR(1)	3583.817	3583.824
AR(2)	3570.650	3570.663
ARMA(1, 1)	3567.833	3567.847
ARMA(2, 1)	3569.319	3569.341

Which model would you pick?

Forecasting Future Wind Speeds

- Question: How do we predict wind speeds on the original scale, including the seasonality that was previously estimated?
- Suppose we want to predict the next month of wind speed values. We base our forecasts on the ARMA(1,1) model
- We need to reverse the order of our modeling

Linear Predictor Prediction Equations Examples Case Study

Forecasting Future Wind Speeds, continued

 The forecasts for the next 31 days of deseasonalized square root values are:

```
> sqrt.rosslare.forecast <- predict(arma11.model, h)
> sqrt.rosslare.forecast$pred
[1] 3.136357 3.288312 3.317896 3.323656 3.324778 3.324996 3.325049
[8] 3.325047 3.325049 3.325049 3.325049 3.325049 3.325049 3.325049
[15] 3.325049 3.325049 3.325049 3.325049 3.325049 3.325049 3.325049
[22] 3.325049 3.325049 3.325049 3.325049 3.325049 3.325049
[22] 3.325049 3.325049 3.325049
[3.325049 3.325049
[3.325049 3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.325049
[3.3250
```

The standard error for the forecasts are:

> round(sqrt.rosslare.forecast\$se, 2)

- [1] 0.6409755 0.7020359 0.7042464 0.7043300 0.7043332 0.7043333
- [7] 0.7043333 0.7043333 0.7043333 0.7043333 0.7043333 0.7043333
- [13] 0.7043333 0.7043333 0.7043333 0.7043333 0.7043333 0.7043333
- [19] 0.7043333 0.7043333 0.7043333 0.7043333 0.7043333 0.7043333
- [25] 0.7043333 0.7043333 0.7043333 0.7043333 0.7043333 0.7043333
- [31] 0.7043333

inear Predictor

Prediction Equations

Examples

Forecasting future wind speeds, continued

Next, we add back in the seasonality to get:

> adj.forecast <- fitted(harm.model)[1:h] + sqrt.rosslare.forecast\$pred</pre> З 3 292642 3 444667 3 474464 3 480576 3 482189 3 483033 3 483835 3 484730 3 485742 3 486870 3 488110 3 489454 3 490896 3 492427 3 494039 3 495722 3.497468 3.499267 3.501108 3.502981 3.504874 3.506778 3.508680 3.510569 3.512434 3.514264 3.516047 3.517772 3.519428 3.521003 3.522487

Finally, we transform back to the original scale

10 84149 11 86573 12 07190 12 11441 12 12564 12 13152 12 13710 12 14334 12.15040 12.15826 12.16691 12.17629 12.18635 12.19704 12.20831 12.22007 12,23229 12,24487 12,25776 12,27087 12,28414 12,29749 12,31083 12,32410 12.33720 12.35005 12.36259 12.37472 12.38637 12.39746 12.40791

 To get the prediction limits, we need to transform the lower and upper prediction limits on the sqrt scale

```
> plus.or.minus <- qnorm(0.975) * sqrt.rosslare.forecast$se
> lower <- forecast - plus.or.minus
> upper <- forecast + plus.or.minus</pre>
```


inear Predictor

Examples

Visualizing the Forecasts

Prediction with

Stationary Time Series

inear Predictor

Prediction Equations

Examples

- What is the full model for our time series data?
- Is there a better description for the trend rather than just a constant term?
- How well do we forecast?