Lecture 6 Prediction with Stationary Time Series
 Readings: CC08 Chapter 9; BD16 Chapter 2.5 3.3; SS17 Chapter 3.4
 MATH 8090 Time Series Analysis Week 6

Agenda

(1) Linear Predictor
(3) Examples
4. Case Study

Forecasting Stationary Time Series

Let $\left\{X_{t}\right\}$ be a stationary process with mean μ and ACVF $\gamma(\cdot)$. Based on the observed data, $\boldsymbol{X}_{n}=\left(X_{1}, X_{2}, \cdots, X_{n}\right)^{T}$, we want to forecast X_{n+h} for some h, a positive integer

- Question: What is the best way to do so?
\Rightarrow Need to decide on what "best" means
- A commonly used metric for describing forecast performance is the mean square prediction error (MSPE):

$$
\operatorname{MSPE}=\mathrm{E}\left[\left(X_{n+h}-m_{n}\left(\boldsymbol{X}_{n}\right)\right)^{2}\right] .
$$

\Rightarrow the best predictor (in terms of MSPE) is

$$
m_{n}\left(\boldsymbol{X}_{n}\right)=\mathbb{E}\left[X_{n+h} \mid \boldsymbol{X}_{n}\right],
$$

the conditional expectation of X_{n+h} given \boldsymbol{X}_{n}

Linear Predictor

Calculating $\mathbb{E}\left[X_{n+h} \mid \boldsymbol{X}_{n}\right]$ can be difficult in general

- We will restrict to a linear combination of $X_{1}, X_{2}, \cdots, X_{n}$ and a constant \Rightarrow linear predictor:

$$
\begin{aligned}
P_{n} X_{n+h} & =c_{0}+c_{1} X_{n}+c_{2} X_{n-1}+\cdots+c_{n} X_{1} \\
& =c_{0}+\sum_{j=1}^{n} c_{j} X_{n+1-j}
\end{aligned}
$$

- We select the coefficients that minimize the h-step-ahead mean squared prediction error:

$$
\mathbb{E}\left(\left[X_{n+h}-P_{n} X_{n+h}\right]^{2}\right)=\mathbb{E}\left(X_{n+h}-c_{0}-\sum_{j=1}^{n} c_{j} X_{n+1-j}\right)^{2}
$$

- The best linear predictor is the best predictor if $\left\{X_{t}\right\}$ is Gaussian

The steps that we are about to follow to calculate the c_{j} values are the same as you would use for calculating ordinary least squares estimates

- Take the derivative of the MSPE with respect to each coefficient c_{j}

C Set each derivative equal to zero
© Solve with respect to the coefficients

Forecasting Stationary Processes I

For simplicity, let's assume $\mu=0$ (we can always achieve that by subtracting off μ) so that we don't need the constant term. We have

$$
P_{n} X_{n+h}=c_{1} X_{n}+c_{2} X_{n-1}+\cdots+c_{n} X_{1} .
$$

We want the MSPE
$\mathbb{E}\left[\left(X_{n+h}-P_{n} X_{n+h}\right)^{2}\right]=\mathbb{E}\left[\left(X_{n+h}-c_{1} X_{n}-c_{2} X_{n-1}-\cdots-c_{n} X_{1}\right)^{2}\right]$ as small as possible.

From now on let's definite

$$
\mathbb{E}\left[\left(X_{n+h}-c_{1} X_{n}-c_{2} X_{n-1}-\cdots-c_{n} X_{1}\right)^{2}\right]=S\left(c_{1}, \cdots, c_{n}\right)
$$

We are going to take derivative of the $S\left(c_{1}, \cdots, c_{n}\right)$ with respect to each coefficient c_{j}

Forecasting Stationary Processes II

S is a quadratic function of $c_{1}, c_{2}, \cdots, c_{n}$, so any minimizing set of c_{j} 's must satisfy these n equations:

$$
\frac{\partial S\left(c_{1}, \cdots, c_{n}\right)}{\partial c_{j}}=0, \quad j=1, \cdots, n .
$$

Since $S\left(c_{1}, \cdots, c_{n}\right)=\mathbb{E}\left[\left(X_{n+h}-c_{1} X_{n}-c_{2} X_{n-1}-\cdots-c_{n} X_{1}\right)^{2}\right]$, we have

$$
\begin{aligned}
& \frac{\partial S\left(c_{1}, \cdots, c_{n}\right)}{\partial c_{j}}=-2 \mathbb{E}\left[\left(X_{n+h}-\sum_{i=1}^{n} c_{i} X_{n-i+1}\right) X_{n-j+1}\right]=0 \\
& \Rightarrow \operatorname{Cov}\left(X_{n+h}-\sum_{i=1}^{n} c_{i} X_{n-i+1}, X_{n-j+1}\right)=0, \quad j=1, \cdots, n
\end{aligned}
$$

\Rightarrow Prediction error is uncorrelated with all RVs used in corresponding predictor

Forecasting Stationary Processes III

Orthogonality principle:

$$
\mathbb{C o v}\left(X_{n+h}-\sum_{i=1}^{n} c_{i} X_{n-i+1}, X_{n-j+1}\right)=0, \quad j=1, \cdots, n
$$

We have

$$
\operatorname{Cov}\left(X_{n+h}, X_{n-j+1}\right)-\sum_{i=1}^{n} c_{i} \operatorname{Cov}\left(X_{n-i+1}, X_{n-j+1}\right)=0
$$

We obtain $\left\{c_{i} ; i=1, \cdots, n\right\}$ by solving the system of linear equations:

$$
\left\{\gamma(h+j-1)=\sum_{i=1}^{n} c_{i} \gamma(i-j): j=1, \cdots, n\right\},
$$

to find n unknown c_{i} 's

Computing $P_{n} X_{n+h}$ via Matrix Operations

We can rewrite the system of prediction equations as

$$
\gamma_{n}=\Sigma_{n} c_{n}
$$

with $\gamma_{n}=(\gamma(h), \gamma(h+1), \cdots \gamma(h+n-1))^{T}, \boldsymbol{c}_{n}=\left(c_{1}, c_{2}, \cdots, c_{n}\right)^{T}$ and

$$
\Sigma_{n}=\left[\begin{array}{cccc}
\gamma(0) & \gamma(1) & \cdots & \gamma(n-1) \\
\gamma(1) & \gamma(0) & \cdots & \gamma(n-2) \\
\vdots & \vdots & \ddots & \vdots \\
\gamma(n-1) & \gamma(n-2) & \cdots & \gamma(0)
\end{array}\right]
$$

is the covariance matrix of $\left(X_{1}, X_{2}, \cdots, X_{n}\right)^{T}$.

Solving for c_{n} we have

$$
\boldsymbol{c}_{n}=\Sigma_{n}^{-1} \gamma_{n}
$$

Properties of the Prediction Errors

The prediction errors are

$$
\begin{aligned}
U_{n+h} & =X_{n+h}-P_{n} X_{n+h} \\
& =\left(X_{n+h}-\mu\right)-\sum_{j=1}^{n} c_{j}\left(X_{n+1-j}-\mu\right) .
\end{aligned}
$$

It then follows that

- The prediction error has mean zero

$$
\mathbb{E}\left(U_{n+h}\right)=\mathbb{E}\left(X_{n+h}-P_{n} X_{n+h}\right)=0
$$

- The prediction error is uncorrelated with all RVs used in the predictor

$$
\mathbb{C o v}\left(U_{n+h}, X_{j}\right)=\mathbb{C o v}\left(X_{n+h}-P_{n} X_{n+h}, X_{j}\right)=0, \quad j=1, \cdots, n
$$

The Minimum Mean Squared Prediction Error

We obtain the minimum value of the MSPE by substituting the expression for \boldsymbol{c}_{n} into $\mathbb{E}\left[\left(X_{n+h}-P_{n} X_{n+h}\right)^{2}\right]$:

$$
\begin{aligned}
\mathrm{MSPE} & =\mathbb{E}\left[\left(X_{n+h}-P_{n} X_{n+h}\right)^{2}\right] \\
& =\mathbb{E}\left[\left(X_{n+h}-\mu\right)^{2}\right]-2 \sum_{j=1}^{n} c_{j} \mathbb{E}\left[\left(X_{n+1-j}-\mu\right)\left(X_{n+h}-\mu\right)\right] \\
& +\mathbb{E}\left[\sum_{j=1}^{n} c_{j}\left(X_{n+1-j}-\mu\right)\right]^{2} \\
& =\mathbb{E}\left[\left(X_{n+h}-\mu\right)^{2}\right]-2 \sum_{j=1}^{n} c_{j} \mathbb{E}\left[\left(X_{n+1-j}-\mu\right)\left(X_{n+h}-\mu\right)\right] \\
& +\sum_{j=1}^{n} \sum_{k=1}^{n} c_{j} c_{k} \mathbb{E}\left[\left(X_{n+1-j}-\mu\right)\left(X_{n+1-k}-\mu\right)\right] \\
& =\gamma(0)-2 \sum_{j=1}^{n} c_{j} \gamma(h+j-1)+\sum_{j=1}^{n} \sum_{k=1}^{n} c_{j} c_{k} \gamma(k-j) \\
& =\gamma(0)-2 \boldsymbol{c}_{n}^{T} \gamma_{n}+\boldsymbol{c}_{n}^{T} \Sigma_{n} \boldsymbol{c}_{n} .
\end{aligned}
$$

The Minimum Mean Squared Prediction Error (Cont'd)

From the previous slide we have

$$
\mathrm{MSPE}=\gamma(0)-2 \boldsymbol{c}_{n}^{T} \gamma_{n}+\boldsymbol{c}_{n}^{T} \Sigma_{n} \boldsymbol{c}_{n}
$$

Recall that $c_{n}=\Sigma_{n}^{-1} \gamma_{n}$, therefore we have

$$
\begin{aligned}
\mathrm{MSPE} & =\gamma(0)-2 \boldsymbol{c}_{n}^{T} \boldsymbol{\gamma}_{n}+\boldsymbol{c}_{n}^{T} \Sigma_{n} \Sigma_{n}^{-1} \gamma_{n} \\
& =\gamma(0)-\boldsymbol{c}_{n}^{T} \gamma_{n} \\
& =\gamma(0)-\sum_{j=1}^{n} c_{j} \gamma(h+j-1) .
\end{aligned}
$$

If $\left\{X_{t}\right\}$ is a Gaussian process then an approximate $100(1-\alpha) \%$ prediction interval for X_{n+h} is given by

$$
P_{n} X_{n+h} \pm z_{1-\alpha / 2} \sqrt{\mathrm{MSPE}} .
$$

One-Step Ahead Prediction of AR(1) Process

Consider $\operatorname{AR}(1)$ process $X_{t}=\phi X_{t-1}+Z_{t}$, where $|\phi|<1$ and $\left\{Z_{t}\right\} \sim \mathrm{WN}\left(0,1-\phi^{2}\right)$.

- Since $\operatorname{Var}\left(X_{t}\right)=1, \gamma(h)=\rho(h)=\phi^{|h|}$
- To forecast X_{n+1} based upon $\boldsymbol{X}_{n}=\left(X_{1}, \cdots, X_{n}\right)^{T}$, using best linear predictor $P_{n} X_{n+1}=\boldsymbol{c}_{n}^{T} \boldsymbol{X}_{n}$, we need to solve $\Sigma_{n} c_{n}=\gamma_{n}$

$$
\left[\begin{array}{cccc}
1 & \phi & \cdots & \phi^{n-1} \\
\phi & 1 & \cdots & \phi^{n-2} \\
\vdots & \vdots & \cdots & \vdots \\
\phi^{n-1} & \phi^{n-2} & \cdots & 1
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right]=\left[\begin{array}{c}
\phi \\
\phi^{2} \\
\vdots \\
\phi^{n}
\end{array}\right]
$$

\Rightarrow the solution is $\boldsymbol{c}_{n}=(\phi, 0, \cdots, 0)^{T}$, yielding

$$
P_{n} X_{n+1}=\boldsymbol{c}_{n}^{T} \boldsymbol{X}_{n}=\phi X_{n}
$$

One-Step Ahead Prediction of AR(1) Process (Cont'd)

- ϕX_{n} makes intuitive sense as a predictor since

$$
X_{n+1}=\phi X_{n}+Z_{n+1}
$$

- Prediction error is $X_{n+1}-\phi X_{n}=Z_{n+1}$ and

$$
\operatorname{Cov}\left(Z_{t}, X_{n-j+1}\right)=0, j=1, \cdots, n
$$

- MSPE is

$$
\operatorname{Var}\left(X_{n+1}-\phi X_{n}\right)=\gamma(0)-\boldsymbol{c}_{n}^{T} \gamma_{n}=1-\phi^{2},
$$

because $\boldsymbol{c}_{n}=(\phi, 0, \cdots, 0)^{T}$ and $\gamma_{n}=\left(\phi, \phi^{2}, \cdots, \phi^{n}\right)^{T}$

Wind Speed Time Series Example [Source: UW stat 519 lecture notes by Donald Percival]

Let's use this series to illustrate forecasting one step ahead

Model \& Sample ACFs \& 95\% Confidence Bounds

Model \& Sample ACFs \& 95\% Confidence Bounds

The sample ACF indicates compatibility with $\mathrm{AR}(1)$ model $\Rightarrow P_{n} X_{n+1}=\phi X_{n}$

One-Step-Ahead Prediction of Wind Speed Series

One-Step-Ahead Prediction

Predicting "Missing" Values

- Let $\left\{X_{t}\right\}$ be a stationary process with mean μ and ACVF $\gamma(\cdot)$. Suppose we know X_{1} and X_{3}, and want to predict X_{2} using linear combinations of X_{1} and X_{3}
- Solution: To calculate $P_{X_{1}, X_{3}} X_{2}$ we minimize

$$
\begin{aligned}
\mathrm{MSPE} & =\mathbb{E}\left[\left(X_{2}-P_{X_{1}, X_{3}} X_{2}\right)^{2}\right] \\
& =\mathbb{E}\left[\left(X_{2}-c_{0}-c_{1} X_{3}-c_{2} X_{1}\right)^{2}\right]
\end{aligned}
$$

- Proceed as for the forecasting case to get the optimal coefficients:
- Calculate derivatives
- Set the derivatives equal to zero
- Solve the linear system of equation

Another AR(1) Example with $\phi=-0.9$

$\phi=-0.9 \mathrm{AR}(1) \mathrm{x}_{\mathrm{t}}$ from Gaussian $\mathrm{WN}(0,1)$

Subsampled X_{1}, X_{3}, \cdots and Removed X_{2}, X_{4}, \cdots

Subsampled $\phi=-0.9 \operatorname{AR}(1) \mathrm{x}_{1}, \mathrm{x}_{3}, \ldots$

The best linear predictor of X_{2} given X_{1}, X_{3} is

$$
\hat{X}_{2}=\frac{\phi}{1+\phi^{2}}\left(X_{1}+X_{3}\right),
$$

and the MSPE is

$$
\frac{\sigma^{2}}{1+\phi^{2}}
$$

Predict X_{2}, X_{4}, \cdots Using Best Linear Predictor

Subsampled and Predicted $\phi=-0.9$ AR(1) x_{1}, x_{3}, \ldots

Prediction Errors from Best Linear Predictor

Prediction Errors from Best Linear Predictor

Linear Predictor
Dredietinn Enulation
Examples

A Modeling Case Study of Ireland Wind Data
 (Courtesy of Peter Craigmile's time series lecture notes)

Data Description [Haslett \& Raftery, 1989]

- 12 wind stations collected 6226 daily readings from 1/1/61 to $1 / 17 / 78$. The wind speeds are measured in knots (1 knot $=0.5148$ meters/second)
- We will focus on the wind data from 1965-1969 at the Rosslare station
- Modeling procedure:
- Exploratory analysis
- Model and remove the trend and seasonal components
- Model identification, fitting, and selection
- Perform forecast

- No clear trend

- No clear trend
- Seasonal Pattern

Estimating the Season Pattern

Here we fit a harmonic regression to account for the seasonal effects

ACF Plots: Original and Deseasonalized Series

Apply Transformation to Make Wind Speeds More Gaussian Like

Now take square roots of the original data and deseasonalize again!

Estimating the Seasonal Component of the Transformed

 Series

Next, we need to check if the deseasonalized series Gaussian like

Marginal Distribution and ACF/PACF of the Deseasonalized Series

Based on ACF/PACF, which ARMA model would you choose?

Maximum Likelihood Estimation in R: AR(1)

> \#\# Fit an AR(1) model
$>$ ar1.model <- arima(sqrt. rosslare.ds, order $=c(1,0,0))$
> \#\# summarize the model
$>$ ar1.model

Call:
$\operatorname{arima}(x=s q r t . r o s s l a r e . d s, \operatorname{order}=c(1,0,0))$

Coefficients:
ar1 intercept
$\begin{array}{lll} & 0.4044 & 3.3251 \\ \text { s.e. } & 0.0214 & 0.0253\end{array}$
sigma^2 estimated as 0.4149: log likelihood $=-1788.91$, aic $=3581.82$

Residual Plots for the AR(1) Model

Normality assumption seems reasonable.
Next check the ACF/PACF and perform a Box test to assess if the $\operatorname{AR}(1)$ fit adequately account for temporal dependence strucuture

Diagnostic for the AR(1) Model

> Box.test(ar1.resids, lag = 32, type = "Ljung-Box")
Box-Ljung test
data: ar1.resids
X-squared $=53.656, \mathrm{df}=32, \mathrm{p}$-value $=0.009603$

AR(2) Maximum Likelihood Estimation

```
> ## Fit an AR(2) model
```

$>$ ar2.model <- arima(sqrt.rosslare.ds, order $=c(2,0,0))$
$>$ \#\# summarize the model
$>$ ar2.model

Call:

$\operatorname{arima}(x=$ sqrt. rosslare.ds, order $=c(2,0,0))$

Coefficients:

$a r 1$	ar2	intercept
s.e. 0.0233	-0.0911	3.3252
0.0233	0.0231	

sigma^2 estimated as 0.4115: \log likelihood $=-1781.32$, aic $=3568.65$

Residual Plots for the AR(2) Model

Normality assumption seems reasonable.
Next check the ACF/PACF and perform a Box test to assess if the $\operatorname{AR}(2)$ fit adequately account for temporal dependence strucuture

Diagnostic for the AR(2) Model

> Box.test(ar2.resids, $\operatorname{lag}=32$, type $=$ "Ljung-Box")

Box-Ljung test

data: ar2.resids
X-squared $=36.852, \mathrm{df}=32, \mathrm{p}$-value $=0.2544$

ARMA(1, 1) Maximum Likelihood Estimation

> \#\# Fit an ARMA(1,1) model
> arma11.model <- arima(sqrt.rosslare.ds, order $=c(1,0,1))$
> \#\# summarize the model
> arma11.model
Call:
$\operatorname{arima}(x=$ sqrt.rosslare.ds, order $=c(1,0,1))$
Coefficients:
ar1 ma1 intercept

$$
0.1947 \quad 0.2521 \quad 3.3250
$$

$$
\text { s.e. } 0.0556 \quad 0.0553 \quad 0.0233
$$

sigma^2 estimated as 0.4108: \log likelihood $=-1779.92, \quad$ aic $=3565.83$

Residual Plots for the ARMA(1, 1) Model

Normality assumption seems reasonable.
Next check the ACF/PACF and perform a Box test to assess if the $\operatorname{ARMA}(1,1)$ fit adequately account for temporal dependence strucuture

Diagnostic for the ARMA(1, 1) Model

> Box.test(arma11.resids, lag = 32, type = "Ljung-Box")
Box-Ljung test
data: arma11.resids
X-squared $=33.09, d f=32, p$-value $=0.4137$

ARMA(2, 1) Maximum Likelihood Estimation

$>$ \#\# Fit an $\operatorname{ARMA}(2,1)$ model
> arma21.model <- arima(sqrt.rosslare.ds, order $=c(2,0,1))$
> \#\# summarize the model
$>$ arma21.model

Call:
$\operatorname{arima}(x=$ sqrt.rosslare.ds, order $=c(2,0,1))$

Residual Plots for the ARMA(2, 1) Model

Normality assumption seems reasonable.
Next check the ACF/PACF and perform a Box test to assess if the ARMA $(2,1)$ fit adequately account for temporal dependence strucuture

Diagnostic for the ARMA(2, 1) Model

> Box.test(arma21.resids, lag = 32, type = "Ljung-Box")
Box-Ljung test
data: arma21.resids
X-squared $=32.537, d f=32, p$-value $=0.4404$

Comparing Models via Information Criteria

Model	AIC	AICC
AR(1)	3583.817	3583.824
AR(2)	3570.650	3570.663
ARMA(1, 1)	3567.833	3567.847
ARMA(2, 1)	3569.319	3569.341

Which model would you pick?

Forecasting Future Wind Speeds

- Question: How do we predict wind speeds on the original scale, including the seasonality that was previously estimated?
- Suppose we want to predict the next month of wind speed values. We base our forecasts on the ARMA(1,1) model
- We need to reverse the order of our modeling

Forecasting Future Wind Speeds, continued

- The forecasts for the next 31 days of deseasonalized square root values are:

```
> sqrt.rosslare.forecast <- predict(arma11.model, h)
> sqrt.rosslare.forecast$pred
[1] 3.136357 3.288312 3.317896 3.323656 3.324778 3.324996 3.325039
[8] 3.325047 3.325049 3.325049 3.325049 3.325049 3.325049 3.325049
[15] 3.325049 3.325049 3.325049 3.325049 3.325049 3.325049 3.325049
[22] 3.325049 3.325049 3.325049 3.325049 3.325049 3.325049 3.325049
[29] 3.325049 3.325049 3.325049
\begin{tabular}{rlllllll}
{\([1]\)} & 3.136357 & 3.288312 & 3.317896 & 3.323656 & 3.324778 & 3.324996 & 3.325039 \\
{\([8]\)} & 3.325047 & 3.325049 & 3.325049 & 3.325049 & 3.325049 & 3.325049 & 3.325049 \\
{\([15]\)} & 3.325049 & 3.325049 & 3.325049 & 3.325049 & 3.325049 & 3.325049 & 3.325049 \\
{\([22]\)} & 3.325049 & 3.325049 & 3.325049 & 3.325049 & 3.325049 & 3.325049 & 3.325049 \\
{\([29]\)} & 3.325049 & 3.325049 & 3.325049 & & & &
\end{tabular}
```

- The standard error for the forecasts are:

```
> round(sqrt.rosslare.forecast$se, 2)
    [1] 0.6409755 0.7020359 0.7042464 0.7043300 0.7043332 0.7043333
    [7] 0.7043333 0.7043333 0.7043333 0.7043333 0.7043333 0.7043333
[13] 0.7043333 0.7043333 0.7043333 0.7043333 0.7043333 0.7043333
[19] 0.7043333 0.7043333 0.7043333 0.7043333 0.7043333 0.7043333
[25] 0.7043333 0.7043333 0.7043333 0.7043333 0.7043333 0.7043333
[31] 0.7043333
```


Forecasting future wind speeds, continued

- Next, we add back in the seasonality to get:
> adj.forecast <- fitted(harm.model)[1:h] + sqrt.rosslare.forecast\$pred

1	2	3	4	5	6	7	8
3.292642	3.444667	3.474464	3.480576	3.482189	3.483033	3.483835	3.484730
9	10	11	12	13	14	15	16
3.485742	3.486870	3.488110	3.489454	3.490896	3.492427	3.494039	3.495722
17	18	19	20	21	22	23	24
3.497468	3.499267	3.501108	3.50291	3.504874	3.506778	3.508680	3.510569
25	26	27	28	29	30	31	

3.5124343 .5142643 .5160473 .5177723 .5194283 .5210033 .522487

- Finally, we transform back to the original scale

1	2	3	4	5	6	7	8
10.84149	11.86573	12.07190	12.11441	12.12564	12.13152	12.13710	12.14334
9	10	11	12	13	14	15	16
12.15040	12.15826	12.16691	12.17629	12.18635	12.19704	12.20831	12.22007
17	18	19	20	21	22	23	24
12.23229	12.24487	12.25776	12.27087	12.28414	12.29749	12.31083	12.32410
25	26	27	28	29	30	31	
12.33720	12.35005	12.36259	12.37472	12.38637	12.39746	12.40791	

- To get the prediction limits, we need to transform the lower and upper prediction limits on the sqrt scale

```
> plus.or.minus <- qnorm(0.975) * sqrt.rosslare.forecast$se
> lower <- forecast - plus.or.minus
> upper <- forecast + plus.or.minus
```


Visualizing the Forecasts

Further Questions

- What is the full model for our time series data?
- Is there a better description for the trend rather than just a constant term?
- How well do we forecast?

