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Monthly Price of Oil: January 1986–January 2006
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A stationary model does not seem to be reasonable. However,
it is also not clear which (deterministic) trend model is
appropriate /
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Random Walks Revisited

Recall the random walk process

Xt = Z1 +Z2 +⋯ +Zt =
t

∑
j=1

Zj ,

where {Zt} ∼ WN(0, σ2)

{Xt} is a nonstationary process

We can obtain a stationary process by differencing

∇Xt =Xt −Xt−1 = (1 −B)Xt = Zt

{Xt} is an example of an autoregressive integrated
moving average (ARIMA) process– ARIMA(0, 1, 0)
process
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ARIMA Models

An ARIMA model is an ARMA process after differencing

Let d be a non-negative integer. Then Xt is an ARIMA(p,
d, q) process if

Yt = ∇dXt = (1 −B)dXt

is a causal ARMA process

Let φ(B) be the AR polynomial and θ(B) be the MA
polynomial. Then for {Zt} ∼ WN(0, σ2)

φ(B)Yt = θ(B)Zt,

and since Yt = (1 −B)dXt, we have

φ(B)(1 −B)dXt = θ(B)Zt
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Example: ARIMA(1, 1, 0)

Let φ(z) = 1 − φ1z, θ(z) = 1 and d = 1. For a causal stationary
solution (after differencing) we need to assume ∣φ1∣ < 1. Then
{Xt} is an ARIMA (1, 1, 0) process,

(1 − φ1B)(1 −B)Xt = Zt,

where {Zt} ∼ WN(0, σ2)
Now let Yt = (1 −B)Xt =Xt −Xt−1, afer some rearrangements
we have

Xt =Xt−1 + Yt
= (Xt−2 + Yt−1) + Yt

⋮

=X0 +
t

∑
j=1

Yj

Thus {Xt} is a “sort of random walk”–we cumulatively sum an
AR(1) process, {Yt}
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Simulated ARIMA and Differenced ARMA Process
We simulate an ARIMA(1,1,0):

(1 − 0.5B)(1 −B)Xt = Zt, {Zt} ∼ N(0,1)
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Adding a Polynomial Trend

For d ≥ 1, let {Xt} be an ARIMA(p, d, q) process. Then {Xt}
satisfies the equation

φ(B)(1 −B)dXt = θ(B)Zt

Let µt be a polynomial of degree (d− 1), i.e., µt = ∑d−1
j=0 ajt

j

for constants {aj}

Now let Vt = µt +Xt, then

φ(B)(1 −B)dVt = φ(B)(1 −B)d(µt +Xt)
= φ(B)(1 −B)dµt + φ(B)(1 −B)dXt

= 0 + φ(B)(1 −B)dXt

= θ(B)Zt

Takeaway: ARIMA(p, d, q) are useful for modeling data with
polynomial trends, due to the inherent differencing that
can be used to remove trends
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Typical Steps for Modeling ARIMA Processes: Exploratory
Data Analysis

Plot the data, ACF, PACF and Q-Q plots

Check for unusual features of the data

Check for stationarity

Do we need to transform the data?

Eliminate trend

Estimating the trend and removing it from the series

Or, differencing the series (i.e., select d in the ARIMA
model)

Plot the sample ACF/PACF for the stationary component

Identify candidate values of p and q
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Typical Steps for Modeling ARIMA Processes: Model
Estimation

Estimate the ARMA process parameters for the candidate
models

Check the goodness of fit: Are the time series residuals,
{rt} a sample of i.i.d. noise?

Model selection:

Using information criteria such as AIC and AICC

Test model parameters to compare between the “full” model
and the “subset” model
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Forecasting ARIMA Processes

We need more assumptions to forecast ARIMA(p, d, q)
processes. Let us start with the case of d = 1, i.e.,

φ(B)(1 −B)Xt = θ(B)Zt,

where {Zt} ∼ WN(0, σ2)

Note: Yt = (1 −B)Xt =Xt −Xt−1 is an ARMA(p, q) process

We want to find the best linear predictor (BLP) of Xn+1

based on X0,X1,⋯,Xn

We konw that Xn+1 =Xn + Yn+1 ⇒ only need to figure out
the BLP of Yn+1 based on {X0, Y1,⋯, Yn}

We need to know E(X2
0) and E(X0Yj) for j = 1,⋯, n + 1
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Forecasting ARIMA(p, 1, q) Processes (Cont’d)

Problem: What is E(X0Yj)?

We assume that X0 is uncorrelated with Y1, Y2,⋯

Then the BLP of Xn+1 based on {X0,X1,⋯,Xn} is the
same as the BLP of Xn+1 based on {Y1, Y2,⋯, Yn}

This extends to ARIMA(p, d, q) processes:

If we assume that {X1−d,⋯,X0} is uncorrelated with
Y1, Y2,⋯, then the BLP of Yn+1 based on
{X1−d,⋯,X0,⋯,Xn} is the same as the BLP based on
{Y1, Y2,⋯, Yn}
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Percentage Changes and Logarithms

Suppose Xt tends to have relatively stable percentage
changes from one time period to the next. Specifically, assume
that

Xt = (1 + Yt)Xt−1,

where 100Yt is the percentage change from Xt−1 to Xt. Then

log(Xt) − log(Xt−1) = log ( Xt

Xt−1
) = log(1 + Yt).

If Yt is restricted to, say, ∣Yt∣ < 0.2 (ie., the percentage changes
are at most ±20%), then, to a good approximation,
log(1 + Yt) ≈ Yt. Consequently

∆[log(Xt)] ≈ Yt
will be relatively stable and perhaps well-modeled by a

stationary process.

In financial literature, the differences of the (natural)
logarithms are usually called returns
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Time Series Plots of Monthly US Electricity Production
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