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Readings: CC08 Chapter 5; BD16 Chapter 6.1-6.4; SS17
Chapter 3.6-3.7
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Nonstationary Time

Monthly Price of Oil: January 1986-January 2006 Series Models
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A stationary model does not seem to be reasonable. However,
it is also not clear which (deterministic) trend model is
appropriate ® »



Nonstationary Time

Random Wa|kS ReVISIted Series Models
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Recall the random walk process

t
Xo=Zy+Zo+-+Zy= ). Zj,
J=1

where {Z;} ~ WN(0,0?)
{X.} is a nonstationary process

@ We can obtain a stationary process by differencing

VXt = Xt —Xt,1 = (1 - B)Xt = Zt

o {X.} is an example of an autoregressive integrated
moving average (ARIMA) process— ARIMA(O, 1, 0)
process

7.3



ARIMA Models et

An ARIMA model is an ARMA process after differencing CiLEMb.'N

@ Let d be a non-negative integer. Then X; is an ARIMA(p,
d, q) process if

Y, =viX, = (1-B)'X,
is a causal ARMA process
@ Let ¢(B) be the AR polynomial and 6(B) be the MA
polynomial. Then for {Z;} ~ WN(0,0?)
¢(B)Y; =0(B)Z,
and since Y; = (1 - B)%X,, we have

¢(B)(1-B)'X, =0(B)Z,
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Example: ARIMA(1, 1, 0) N Geries Models
Let ¢(z) =1-¢12,0(z) =1 and d = 1. For a causal stationary M\I
solution (after differencing) we need to assume |¢;| < 1. Then
{X;}is an ARIMA (1, 1, 0) process,

(1-¢:1B)(1-B)Xy = Zy,
where {Z;} ~ WN(0,0?)

Now let Y; = (1 - B)X, = X; — X;_1, afer some rearrangements
we have

X=X 1 +Y;
= (Xi2+Yi1)+Y,

t
- X0+ XY,
j=1

Thus {X,} is a “sort of random walk”-we cumulatively sum an
AR(1) process, {Y;}
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Simulated ARIMA and Differenced ARMA Process

We

simulate an ARIMA(1, 1, 0):

(1-0.5B)(1-B)X, = Z,,

{Zi} ~N(0, 1)
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Nonstationary Time

Adding a Polynomial Trend Series Models

Ford > 1, let {X;} be an ARIMA(p, d, q) process. Then {X;} M\I
satisfies the equation

#(B)(1-B)'X, =0(B)Z,

@ Let y, be a polynomial of degree (d-1), i.e., pu = X2 a;t’

for constants {a;}
@ Now let V; = uy + Xy, then

¢(B)(1-B)"V; = ¢(B)(1 - B)*(pt + X;)
= ¢(B)(1-B)" e+ ¢(B)(1 - B)'X,
=0+¢(B)(1-B)*X,
=0(B)Z,
o Takeaway: ARIMA(p, d, q) are useful for modeling data with
polynomial trends, due to the inherent differencing that
can be used to remove trends
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Nonstationary Time

Typical Steps for Modeling ARIMA Processes: Exploratory Series Models
Data Analysis CLEMS®N

o Plot the data, ACF, PACF and Q-Q plots
@ Check for unusual features of the data
o Check for stationarity

o Do we need to transform the data?

@ Eliminate trend
o Estimating the trend and removing it from the series

o Or, differencing the series (i.e., select d in the ARIMA
model)
@ Plot the sample ACF/PACF for the stationary component

o Identify candidate values of p and ¢

7.8



Nonstationary Time

Typical Steps for Modeling ARIMA Processes: Model Series Models
Estimation CLEMS®N

UNITVERSITY

o Estimate the ARMA process parameters for the candidate
models

@ Check the goodness of fit: Are the time series residuals,
{r:} a sample of i.i.d. noise?

@ Model selection:

e Using information criteria such as AIC and AICC

o Test model parameters to compare between the “full” model
and the “subset” model
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Forecasting ARIMA Processes Series Models
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We need more assumptions to forecast ARIMA(p, d, q)
processes. Let us start with the case of d =1, i.e.,

¢(B)(1-B)X, = 0(B)Z,

where {Z;} ~ WN(0,0?)
@ Note: Y; = (1-B)X; = X; — X;_1 is an ARMA(p, ¢) process

@ We want to find the best linear predictor (BLP) of X,
based on X, X;,---, X,

o We konw that X,,+1 = X, + Ys+1 = only need to figure out
the BLP of Y,,.1 based on { Xy, Y1,-, Y, }

o We need to know E(X?) and E(X,Y;) for j=1,--,n+1



Forecasting ARIMA(p, 1, ¢) Processes (Cont’d) L
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Problem: What is E(X,Y;)?

@ We assume that X, is uncorrelated with Y;,Y5, -

@ Then the BLP of X,,,1 based on {X,, X;,---, X, } is the
same as the BLP of X,,,; based on {Y1,Y5,---,Y,,}

@ This extends to ARIMA(p, d, q) processes:

If we assume that {X;_4,--+, Xo} is uncorrelated with
Y1,Ys, -, then the BLP of Y,,,; based on
{X1-4,, X0, -, X} is the same as the BLP based on
{(Y1,Ys, -, Y}



Suppose X, tends to have relatively stable percentage
changes from one time period to the next. Specifically, assume
that

Xi=(1+Y) X,

where 100Y; is the percentage change from X;_; to X;. Then

X,
log(X1) - log(Xi-1) = log (- ) =log(1 + ).
t—1

If Y; is restricted to, say, |Y;| < 0.2 (ie., the percentage changes
are at most £20%), then, to a good approximation,
log(1+Y;) ~ Y;. Consequently

Allog(X¢)] ~Y;

will be relatively stable and perhaps well-modeled by a
stationary process.

In financial literature, the differences of the (natural)
logarithms are usually called returns



Time Series Plots of Monthly US Electricity Production N Gerios Mouels
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