Lecture 9 Regression with Time Series Errors Readings: BD16 Chapter 6.6; SS17 Chapter 3.8

MATH 8090 Time Series Analysis Week 9

Time Series Regression Models

Generalized Least Squares Regression

ake Huron Example

Whitney Huang Clemson University

Agenda

Regression with Time Series Errors

Time Series Regression Models

Generalized Least Squares Regression

Time Series Regression

Suppose we have the following time series model for $\{Y_t\}$:

$$Y_t = m_t + \eta_t$$

where

- m_t captures the mean of $\{Y_t\}$, i.e., $\mathbb{E}(Y_t) = m_t$
- $\{\eta_t\}$ is a zero mean stationary process with ACVF $\gamma_{\eta}(\cdot)$

The component $\{m_t\}$ may depend on time t, or possibly on other explanatory series

Time Series Regression Models

Generalized Least Squares Regression

Example Models for m_t : Trends and Seasonality

- Constant trend model: For each t let $m_t = \beta_0$ for some unknown parameter β_0
- Simple linear regression: For unknown parameters β_0 and β_1 ,

$$m_t = \beta_0 + \beta_1 x_t,$$

where $\{x_t\}$ is some explanatory variable indexed in time (may just be a function of time or could be other series)

• Harmonic regression: For each t let

$$m_t = A\cos(2\pi ft + \phi),$$

where A > 0 is the amplitude (an unknown parameter), f > 0 is the frequency of the sinusoid (usually known), and $\phi \in (-\pi, \pi]$ is the phase (usually unknown). We can rewrite this model as

$$m_t = \beta_0 x_{1,t} + \beta_1 x_{2,t},$$

where $x_{1,t} = \cos(2\pi ft)$ and $x_{2,t} = \sin(2\pi ft)$

Regression with Time Series Errors

Time Series Regression Models

Generalized Least Squares Regression

The Multiple Linear Regression Model

Suppose there are p explanatory series $\{x_{j,t}\}_{j=1}^p,$ the time series model for $\{Y_t\}$ is

$$Y_t = m_t + \eta_t,$$

where

$$m_t = \beta_0 + \sum_{j=1}^p \beta_j x_{j,t},$$

and $\{\eta_t\}$ is a mean zero stationary process with ACVF $\gamma_{\eta}(\cdot)$ We can write the linear model in matrix notation:

$$Y = X\beta + \eta$$
,

where $\boldsymbol{Y} = (Y_1, \dots, Y_n)^T$ is the observation vector, the coefficient vector is $\boldsymbol{\beta} = (\beta_0, \beta_1, \dots, \beta_p)^T$, $\boldsymbol{\eta} = (\eta_1, \dots, \eta_n)^T$ is the error vector, and the design matrix is

$$\boldsymbol{X} = \begin{bmatrix} 1 & x_{1,1} & x_{2,1} & \cdots & x_{p,1} \\ 1 & x_{1,2} & x_{2,2} & \cdots & x_{p,2} \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 1 & x_{1,n} & x_{2,n} & \cdots & x_{p,n} \end{bmatrix}$$

Fime Series Regression Models

Generalized Least Squares Regression

The Model Estimates and Distributional Results for i.i.d. Errors Case

Suppose $\{\eta_t\}$ is i.i.d. $N(0, \sigma^2)$. Then the ordinary least squares (OLS) estimate of β is

$$\hat{\boldsymbol{\beta}}_{ ext{OLS}} = \left(\boldsymbol{X}^T \boldsymbol{X} \right)^{-1} \boldsymbol{X}^T \boldsymbol{Y}$$

with

$$\hat{\sigma}^{2} = \frac{\left(\boldsymbol{Y} - \boldsymbol{X}\hat{\boldsymbol{\beta}}_{\text{OLS}}\right)^{T} \left(\boldsymbol{Y} - \boldsymbol{X}\hat{\boldsymbol{\beta}}_{\text{OLS}}\right)}{n - (p+1)}$$

- Gauss-Markov theorem: $\hat{\beta}_{OLS}$ is the best linear unbiased estimator (BLUE) of β
- We have

$$\hat{\boldsymbol{\beta}}_{\text{OLS}} \sim \mathrm{N}(\boldsymbol{\beta}, \sigma^2 \left(\boldsymbol{X}^T \boldsymbol{X} \right)^{-1})$$

is independent of

$$\frac{(n-(p+1))\hat{\sigma}^2}{\sigma^2} \sim \chi^2_{n-(p+1)}$$

Time Series Regression Models

Generalized Least Squares Regression

Climate Over Past Millennia [Jones & Mann, 2004]

Residuals from a linear regression fit are correlated in time

Generalized Least Squares Regression

When dealing with time series the errors $\{\eta_t\}$ are typically correlated in time

Assuming the errors {η_t} are a stationary Gaussian process, consider the model

$$Y = X\beta + \eta$$
,

where $\boldsymbol{\eta}$ has a multivariate normal distribution, i.e., $\boldsymbol{\eta} \sim N(\boldsymbol{0}, \boldsymbol{\Sigma})$

• The generalized least squares (GLS) estimate of β is

$$\hat{\boldsymbol{\beta}}_{\text{GLS}} = \left(\boldsymbol{X}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{X} \right)^{-1} \boldsymbol{X}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{Y},$$

with

$$\sigma^{2} = \frac{\left(\boldsymbol{Y} - \boldsymbol{X}\hat{\boldsymbol{\beta}}_{\text{GLS}}\right)^{T} \left(\boldsymbol{Y} - \boldsymbol{X}\hat{\boldsymbol{\beta}}_{\text{GLS}}\right)}{n - (p+1)}$$

Regression with Time Series Errors

Fime Series Regression Models

Generalized Least Squares Regression

Distributional Properties of Estimators

Gauss-Markov theorem: $\beta_{\rm GLS}$ is the best linear unbiased estimator (BLUE) of β

We have

$$\hat{\boldsymbol{\beta}}_{\text{GLS}} \sim \mathrm{N}(\boldsymbol{\beta}, \sigma^2 \left(\boldsymbol{X}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{X} \right)^T)$$

• The variance of linear combinations of $\hat{\beta}_{GLS}$ is less than or equal to the variance of linear combinations of $\hat{\beta}_{OLS}$, that is:

 $\operatorname{Var}\left(\boldsymbol{c}^{T}\hat{\boldsymbol{\beta}}_{\mathrm{GLS}}\right) \leq \operatorname{Var}\left(\boldsymbol{c}^{T}\hat{\boldsymbol{\beta}}_{\mathrm{OLS}}\right)$

Regression with Time Series Errors

Time Series Regression Models

Generalized Least Squares Regression

Applying GLS In Practice

The main problem in applying GLS in practice is that Σ depends on ϕ , θ , and σ^2 and we have to estimate these

A two-step procedure

- Stimate β by OLS, calculating the residuals $\hat{\eta} = Y - X \hat{\beta}_{OLS}$, and fit an ARMA to $\hat{\eta}$ to get Σ
- Pe-estimate β using GLS
- Alternatively, we can consider one-shot maximum likelihood methods

Time Series Regression Models

Generalized Least Squares Regression

Likelihood-based Regression Methods

Model:

$$Y = X\beta + \eta$$
,

where $\boldsymbol{\eta} \sim N(\boldsymbol{0}, \boldsymbol{\Sigma})$

$$\Rightarrow \mathbf{Y} \sim \mathcal{N}(\mathbf{X}\boldsymbol{\beta}, \Sigma)$$

• We maximum the Gaussian likelihood

$$L_{n}(\boldsymbol{\beta}, \boldsymbol{\phi}, \boldsymbol{\theta}, \sigma^{2}) = (2\pi)^{-n/2} |\boldsymbol{\Sigma}|^{-1/2} \exp\left[-\frac{1}{2} \left(\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}\right)^{T} \boldsymbol{\Sigma}^{-1} \left(\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}\right)\right]$$

with respect to the regression parameters β and ARMA parameters ϕ , θ , σ^2 simultaneously

 As before, we can re-express the likelihoods using the one-step-ahead predictions

Regression with Time Series Errors

Time Series Regression Models

Generalized Least Squares Regression

An Example: Lake Huron Levels

Model:

$$Y_t = m_t + \eta_t$$

where

 $m_t = \beta_0 + \beta_1 t$ $\{n_t\}$ is some ARMA(p, q) process

- Scientific Question: Is there evidence that the lake level has been changing steadily over the years 1875-1972?
- Statistical Hypothesis:

ime Series Regression Models

Generalized Least Squares Regression

Fitting Result form the Two-Step Procedure

```
> lm <- lm(LakeHuron ~ years)</pre>
> lm$coefficients
(Intercept)
                    years
625.55491791 -0.02420111
> (MLE_est1 <- arima(lmresiduals, order = c(2, 0, 0),
                     include.mean = FALSE))
+
(all:
arima(x = lmsresiduals, order = c(2, 0, 0), include.mean = FALSE)
Coefficients:
         ar1
                  ar2
     1.0050 -0.2925
s.e. 0.0976 0.1002
```

sigma^2 estimated as 0.4572: log likelihood = -101.26, aic = 208.51

Fime Series Regression Models

Generalized Least Squares Regression

Fitting Result from One-Step MLE

```
> mle <- arima(LakeHuron, order = c(2, 0, 0),
               xreg = cbind(rep(1,length(LakeHuron)), years),
+
               include.mean = FALSE)
+
> mle
(all:
arima(x = LakeHuron, order = c(2, 0, 0), xreq = cbind(rep(1, length(LakeHuron))),
    years), include.mean = FALSE)
Coefficients:
                  ar2 rep(1, length(LakeHuron))
         ar1
      1.0048 -0.2913
                                         620.5115
S. P. 0.0976
              0.1004
                                          15.5771
        years
      -0.0216
s.e. 0.0081
sigma<sup>2</sup> estimated as 0.4566: log likelihood = -101.2, aic = 212.4
```


Time Series Regression Models

Generalized Least Squares Regression

MLE Fit Diagnostics

Time Series Regression Models

Generalized Least Squares Regression

Lake Huron Example

Box-Ljung test

data: y X-squared = 6.2088, df = 19, p-value = 0.9974

Comparing Confidence Intervals

> confint(lm)

2.5 % 97.5 % (Intercept) 610.14291793 640.9669179 -0.03221272 -0.0161895 vears > confint(MLE_est1) 2.5 % 97.5 % ar1 0.8137180 1.19630830 ar2 -0.4888881 -0.09606208 > confint(mle) 2.5 % 97.5 % ar1 0.81348340 1.196124084 ar2 -0.48806617 -0.094573470 rep(1, length(LakeHuron)) 589.98093574 651.042054268 -0.03744268 -0.005694972 years

Time Series Regression Models

Generalized Least Squares Regression