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9.3

Time Series Regression

Suppose we have the following time series model for {Yt}:

Yt =mt + ηt,

where

mt captures the mean of {Yt}, i.e., E(Yt) =mt

{ηt} is a zero mean stationary process with ACVF γη(⋅)

The component {mt} may depend on time t, or possibly on
other explanatory series
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9.4

Example Models for mt: Trends and Seasonality

Constant trend model: For each t let mt = β0 for some
unknown parameter β0

Simple linear regression: For unknown parameters β0 and
β1,

mt = β0 + β1xt,

where {xt} is some explanatory variable indexed in time
(may just be a function of time or could be other series)

Harmonic regression: For each t let

mt = A cos(2πft + φ),

where A > 0 is the amplitude (an unknown parameter),
f > 0 is the frequency of the sinusoid (usually known), and
φ ∈ (−π,π] is the phase (usually unknown). We can rewrite
this model as

mt = β0x1,t + β1x2,t,

where x1,t = cos(2πft) and x2,t = sin(2πft)
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9.5

The Multiple Linear Regression Model
Suppose there are p explanatory series {xj,t}

p
j=1, the time

series model for {Yt} is

Yt =mt + ηt,

where

mt = β0 +
p

∑
j=1

βjxj,t,

and {ηt} is a mean zero stationary process with ACVF γη(⋅)
We can write the linear model in matrix notation:

Y =Xβ + η,

where Y = (Y1,⋯, Yn)
T is the observation vector, the

coefficient vector is β = (β0, β1,⋯, βp)
T , η = (η1,⋯, ηn)

T is the
error vector, and the design matrix is

X =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 x1,1 x2,1 ⋯ xp,1
1 x1,2 x2,2 ⋯ xp,2
⋮ ⋮ ⋮ ⋯ ⋮

1 x1,n x2,n ⋯ xp,n

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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9.6

The Model Estimates and Distributional Results for i.i.d.
Errors Case

Suppose {ηt} is i.i.d. N(0, σ2). Then the ordinary least squares
(OLS) estimate of β is

β̂OLS = (XTX)
−1
XTY ,

with

σ̂2
=

(Y −Xβ̂OLS)
T
(Y −Xβ̂OLS)

n − (p + 1)

Gauss-Markov theorem: β̂OLS is the best linear unbiased
estimator (BLUE) of β

We have
β̂OLS ∼ N(β, σ2 (XTX)

−1
)

is independent of

(n − (p + 1))σ̂2

σ2
∼ χ2

n−(p+1)
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9.7

Climate Over Past Millennia [Jones & Mann, 2004]
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Residuals from a linear regression fit are correlated in time
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9.8

Generalized Least Squares Regression

When dealing with time series the errors {ηt} are typically
correlated in time

Assuming the errors {ηt} are a stationary Gaussian
process, consider the model

Y =Xβ + η,

where η has a multivariate normal distribution, i.e.,
η ∼ N(0,Σ)

The generalized least squares (GLS) estimate of β is

β̂GLS = (XTΣ−1X)
−1
XTΣ−1Y ,

with

σ2
=

(Y −Xβ̂GLS)
T
(Y −Xβ̂GLS)

n − (p + 1)
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9.9

Distributional Properties of Estimators

Gauss-Markov theorem: βGLS is the best linear unbiased
estimator (BLUE) of β

We have
β̂GLS ∼ N(β, σ2 (XTΣ−1X)

T
)

The variance of linear combinations of β̂GLS is less than or
equal to the variance of linear combinations of β̂OLS, that
is:

Var (cT β̂GLS) ≤ Var (cT β̂OLS)
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9.10

Applying GLS In Practice

The main problem in applying GLS in practice is that Σ
depends on φ, θ, and σ2 and we have to estimate these

A two-step procedure

1 Estimate β by OLS, calculating the residuals
η̂ = Y −Xβ̂OLS, and fit an ARMA to η̂ to get Σ

2 Re-estimate β using GLS

Alternatively, we can consider one-shot maximum
likelihood methods
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9.11

Likelihood-based Regression Methods

Model:
Y =Xβ + η,

where η ∼ N(0,Σ)

⇒ Y ∼ N(Xβ,Σ)

We maximum the Gaussian likelihood

Ln(β,φ,θ, σ
2
)

= (2π)−n/2∣Σ∣
−1/2 exp [−

1

2
(Y −Xβ)

T
Σ−1 (Y −Xβ)]

with respect to the regression parameters β and ARMA
parameters φ, θ, σ2 simultaneously

As before, we can re-express the likelihoods using the
one-step-ahead predictions
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9.12

An Example: Lake Huron Levels

Model:
Yt =mt + ηt

where

mt = β0 + β1t

{ηt} is some ARMA(p, q) process

Scientific Question: Is there evidence that the lake level
has been changing steadily over the years 1875-1972?

Statistical Hypothesis:
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9.13

Fitting Result form the Two-Step Procedure
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9.14

Fitting Result from One-Step MLE
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9.15

MLE Fit Diagnostics
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9.16

Comparing Confidence Intervals
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