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Suppose we have the following time series model for {Y;}: e .

Y;f:mt"'nfn

where

@ m, captures the mean of {Y;}, i.e., E(Y;) = my

@ {n,} is a zero mean stationary process with ACVF ~, (-)

The component {m;} may depend on time ¢, or possibly on
other explanatory series
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Regression with

Example Models for m,: Trends and Seasonality Time Series Errors

@ Constant trend model: For each ¢ let m; = 3, for some M

unknown parameter Sy Time Series

Regression Models
@ Simple linear regression: For unknown parameters 5, and

ﬂls

my = Bo + B12,
where {x;} is some explanatory variable indexed in time
(may just be a function of time or could be other series)

@ Harmonic regression: For each ¢ let

my = Acos(2m ft + ),

where A > 0 is the amplitude (an unknown parameter),

f > 0is the frequency of the sinusoid (usually known), and
¢ € (-m, 7] is the phase (usually unknown). We can rewrite
this model as

my = BoT1 s + B1Ta,

where x1 ; = cos(27 ft) and o ; = sin(2 ft)



The Multiple Linear Regression Model Time Series Ertors
Suppose there are p explanatory series {xj,t}‘;?:l, the time CLEMS%N
series model for {Y;} is L vERSITY

Time Series
Regression Models

}/t =my + Mt
where

p
my = By + Z BT,
j=1

and {n:} is a mean zero stationary process with ACVF ~,(-)
We can write the linear model in matrix notation:

Y =Xp3+n,

where Y = (Y1,--,Y,,)T is the observation vector, the
coefficient vector is B = (8o, B1,+, Bp) T, m = (1,-+,mn) 7T is the
error vector, and the design matrix is

1 z11 221 - Tpa
1 =z o2 v Tp2
x=|l T2 @2 oo

1 Tin T2n *° Tpn
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The Model Estimates and Distributional Results for i.i.d. Time Series Errors

Errors Case CLEMS®N
Suppose {n;} is i.i.d. N(0,0%). Then the ordinary least squares oy
(OLS) estimate of 3 is Regression Models

Bows = (XTX) " X7y,

with ) - A
o (Y- XBois) (Y -XBors)
- n-(p+1)

@ Gauss-Markov theorem: [iOLS is the best linear unbiased
estimator (BLUE) of 3

o We have . .
Bors ~N(B,0* (XTX) ")
is independent of
(n-(p+1))5*
o2 ~ Xn—(p+1)
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Climate Over Past Millennia [Jones & Mann, 2004] Time Series Errors
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Time Series
Regression Models

NH temperatures (C) and climate proxies
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Residuals from a linear regression fit are correlated in time



Generalized Least Squares Regression Time Serios Evrors
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When dealing with time series the errors {n;} are typically pHLYERSTTY

correlated in time

Generalized Least
Squares Regression

@ Assuming the errors {n;} are a stationary Gaussian
process, consider the model

Y =XB8+n,

where n has a multivariate normal distribution, i.e.,
n-~ N(07 Z)

@ The generalized least squares (GLS) estimate of 3 is
Bars = (XTx'x) " XxTu Y,

with A . )
9 (Y - XBcrs) (Y - XBars)
n—(p+1)
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Distributional Properties of Estimators T DGR ErEe
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Gauss-Markov theorem: Bqis is the best linear unbiased i
eStImator (BLU E) Of /8 Squares Regression

@ We have R T
Bais ~N(B,0* (X" X))

@ The variance of linear combinations of BGLS is less than or
equal to the variance of linear combinations of BoLs, that
is:

Var (¢" Bars) < Var (¢’ Bors)
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Applying GLS In Practice

The main problem in applying GLS in practice is that &
depends on ¢, 8, and o2 and we have to estimate these

@ A two-step procedure

@ Estimate B by OLS, calculating the residuals
N =Y - XBouws, and fit an ARMA to 7 to get &

@ Re-estimate 3 using GLS

@ Alternatively, we can consider one-shot maximum
likelihood methods

Regression with
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Generalized Least
Squares Regression
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Likelihood-based Regression Methods Time Series Errors
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Model: e IS
Y =Xp3+n,
Where n-~ 1\1(07 E) Generalized Least

Squares Regression

=Y ~N(XB,%)

@ We maximum the Gaussian likelihood
LTL(/Bﬂ ¢70702)
- ) RIS P exp -5 (Y - X8)T 27 (Y - X))

with respect to the regression parameters 3 and ARMA
parameters ¢, 8, o simultaneously

@ As before, we can re-express the likelihoods using the
one-step-ahead predictions



Regression with

An Example: Lake Huron Leve|S Time Series Errors

CLEMS@®N

UNITVERSITY

Model:
Yi=my+m

where

Lake Huron Example

my = Bo + P1t

{n:} is some ARMA(p, ¢q) process

@ Scientific Question: Is there evidence that the lake level
has been changing steadily over the years 1875-1972?

@ Statistical Hypothesis:



Fitting Result form the Two-Step Procedure

> Im <- Im(LakeHuron ~ years)
> Im$coefficients
(Intercept) years
©25.55491791 -0.02420111
> (MLE_estl <- arima(lm$residuals, order = c(2, 0, @),
+ include.mean = FALSE))

Call:
arima(x = lm$residuals, order = c(2, @, @), include.mean = FALSE)

Coefficients:
arl ar2
1.0050 -0.2925
s.e. 0.0976 0.1002

sigmar2 estimated as ©.4572: 1log likelihood = -101.26, aic = 208.51
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Lake Huron Example



Fitting Result from One-Step MLE

>
+
+
>

mle

mle

Call:

arima(x = LakeHuron, order = c(2, @, @), xreg = cbind(rep(1, length(LakeHuron)),

<- arima(LakeHuron, order = c(2, @, @),
xreg = cbind(rep(l,length(LakeHuron)), years),
include.mean = FALSE)

years), include.mean = FALSE)

Coefficients:

s.

s.

sigmaA2 estimated as 0.4566: log likelihood = -101.2, aic = 212.4

e.

e.

arl ar2 rep(l, length(LakeHuron))
1.0048 -0.2913 620.5115

9.0976 0.1004 15.5771

years
-0.0216
0.0081
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MLE Fit Diagnostics Time Serios Evrors

N
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> plot.residuals(years, resid(mle), xlab = "Year", ylab = "Residuals")
Box-Ljung test
data: vy

X-squared = 6.2088, df = 19, p-value = 0.9974
9.15



Comparing Confidence Intervals

> confint(lm)
2.5 % 97.5 %

(Intercept) 610.14291793 640.9669179
years -0.03221272 -0.0161895
> confint(MLE_estl)

2.5 % 97.5 %
arl 0.8137180 1.19630830
ar2 -0.4888881 -0.09606208
> confint(mle)

2.5 % 97.5 %
arl ©0.81348340 1.196124084
ard -0.48806017 -0.094573470

rep(1l, length(LakeHuron)) 589.98093574 651.042054268
years -0.03744268 -0.005694972
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