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Trend, Seasonality, and Noise

In the last lecture, we mentioned that a time series can often be decomposed into three components: trend,
seasonal effect, and noise (i.e., the remaining variation once trend and seasonal effects have been removed).
Throughout this week, we will assume that an additive model is appropriate (perhaps after applying a
transformation such as a logarithm transformation) for the time series data of interest.

The additive model:

Yt = µt + st + ηt

The Mauna Loa monthly Atmospheric CO2 concentration time series is an example where the additive model
can be an appropriate model to describe the time series.
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data(co2)
par(mar = c(3.8, 4, 0.8, 0.6))
plot(co2, las = 1, xlab = "", ylab = "")
points(co2, col = "blue", pch = 16, cex = 0.4)
mtext("Time (year)", side = 1, line = 2)
mtext(expression(paste("CO"[2], " Concentration (ppm)")), side = 2, line = 2.5)
grid()
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The most commonly used modeling approach is to first focus on the trend and seasonal variation and then
model the remaining ‘noise’ term, which may exhibit temporal correlation, as a stationary time series. This
modeling approach suggests a two-stage procedure:

1. To estimate the tend µt and seasonal variation st.

2. To calculate the residual time series η̂t

η̂t = yt − µ̂t − ŝt, t = 1, · · · , T

Methods for accomplishing the first stage will be described in this week’s materials.

Let’s start with the trend estimation. First, for ease of presentation, we assume there is no seasonal variation,
that is, Yt = µt + ηt with E[ηt] = 0, ∀t.

Trend Estimation

Usually, the form of the trend is unknown and needs to specified and estimated. The first method is Linear
Regression.
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Method I: Regression

To represent the trend component as

µt = β0 + β1x1t + · · · + βpxpt

We have already seem an example (Lake Huron, see the figure below) in the last lecture.

par(mar = c(3.2, 3.2, 0.5, 0.5), mgp = c(2, 0.5, 0), bty = "L")
data(LakeHuron)
plot(LakeHuron, ylab = "Depth (ft)", xlab = "Year", las = 1)
points(LakeHuron, cex = 0.8, col = "blue", pch = 16)
grid()
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Here, a couple of assumptions have been made: first, there is no seasonal component, and therefore, the
model for describing what the observed time series might have been generated can be written as

Yt = µt + ηt

Here we assume that ηt is a zero-mean process (i.e., E[ηt] = 0, ∀t), we have µt = E[Yt], ∀t. Without additional
time series {xt} to be served as a covariate, we can use {t} = {1875, 1876, · · · , 1972} as the covariate to
perform a Linear Regression by assuming there is a linear trend in time, that is

Yt = β0 + β1t + ηt

Next, we need to estimate the parameters β0 and β1. Like in regression analysis, we can use the method of
least squares to obtain the estimated parameters β̂ and β̂1. Specifically, we estimate these parameters by
ordinary least squares, which finds the minimizer of the following objective function
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ℓols =
T∑

t=1
(yt − β0 − β1t)2,

the estimated parameters β̂ = (β̂0, β̂1)T = (XT X)−1XT y, where X =


1 1
1 2

1
...

1 T

 and Y =


Y1
Y2
...

YT

 .

Below we plot the estimated trend µ̂t = β̂0 + β̂1t

library(astsa)
yr <- 1875:1972
lm <- lm(LakeHuron ~ yr); summary(lm)

##
## Call:
## lm(formula = LakeHuron ~ yr)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.50997 -0.72726 0.00083 0.74402 2.53565
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 625.554918 7.764293 80.568 < 2e-16 ***
## yr -0.024201 0.004036 -5.996 3.55e-08 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 1.13 on 96 degrees of freedom
## Multiple R-squared: 0.2725, Adjusted R-squared: 0.2649
## F-statistic: 35.95 on 1 and 96 DF, p-value: 3.545e-08

plot(LakeHuron, ylab = "Depth (ft)", xlab = "Year", las = 1)
abline(lm, col = "blue")
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Note

1. Ordinary least squares (OLS) estimation assumes the observations are independent, which may not
be appropriate in the time series context. However, this assumption is typically made to remove the
trend, before the correlation in {ηt} is explicitly modeled by a stationary time series process.

2. Since {ηt} is typically not an i.i.d. (independent and identically distributed) process (see the acf
plot below), statistical inferences regarding parameters will be invalid (because OLS estimates were
calculated assuming i.i.d. errors)

acf(lm$residuals, las = 1)
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Method II: Smoothing or Local Averaging

The second approach to modeling the trend is using some smoothing techniques, which can be thought as
performing non-parametric regression.

First, we break the time series up into ‘small’ blocks (each with 10 years of data) and average each block.

yr_group <- c(rep(1:9, each = 10), rep(10, 8))

lakeHuron_10yr <- data.frame(cbind(depth = LakeHuron, yrGroup = as.factor(yr_group)))

mean_10yr <- tapply(lakeHuron_10yr$depth, lakeHuron_10yr$yrGroup, mean)

plot(LakeHuron, las = 1, col = "gray", xlab = "Year", ylab = "Depth (ft)")
brk <- seq(1875, 1974, 10)
abline(v = brk, lty = 2)
for (i in 1:9) segments(brk[i], mean_10yr[i], brk[i + 1], lwd = 2)
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Obviously, this is a very rough estimate of the trend. Next we apply a moving average filter to estimate the
trend.
A Moving average smoother estimates the trend at time t by averaging the current observation and the
q either side. That is

µ̂t = 1
2q + 1

q∑
j=−q

yt−j

plot(LakeHuron, las = 1, col = "gray", xlab = "Year",
ylab = "Depth (ft)", lwd = 1.8)
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### This R function is taken from Donald Percival's Time Series Analysis course (UW Stat 519)
filter.with.padding <- function(x, the.filter, iter = 1){

q <- (length(the.filter) - 1) / 2
n <- length(x)
w <- filter(c(rep(x[1], q), x, rep(x[n], q)),

the.filter)[(q + 1):(q + n)]
if(iter > 1) for(i in 2:iter)

w <- filter(c(rep(w[1], q), w, rep(w[n], q)),
the.filter)[(q + 1):(q + n)]

return(w)
}

plot(yr, LakeHuron, col = "gray", xlab = "Year", ylab = "Depth (ft)",
type = "l", main = "", las = 1)

MA.5 <- filter.with.padding(LakeHuron, rep(1 / 11, 11))
lines(yr, MA.5, col = "red")
MA.20 <- filter.with.padding(LakeHuron, rep(1 / 41, 41))
lines(yr, MA.20, col = "blue")
legend("bottomleft", legend = paste("MA q = ", c(5, 20)),

col = c("red", "blue"), bty = "n", lty = 1)
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Exponential smoothing

Let α ∈ [0, 1] be some fixed constant, defined

µ̂t =
{

Y1 if t = 1;
αYt + (1 − α)µ̂t−1 t = 2, · · · T .

For t = 2, · · · , T , we can rewrite µ̂t as

t−2∑
j=0

α(1 − α)jYt−j + (1 − α)t−1Y1.
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⇒ it is a one-sided MA filter with exponentially decreasing weights. One can alter α to control the amounts
of smoothing.

### This R function is taken from Donald Percival's Time Series Analysis course (UW Stat 519)
exp.smoothing <- function(y, alpha = 0.2){

n <- length(y)
mu.hat <- rep(y[1], n)
if(n > 1) for(i in 2:n) mu.hat[i] <- alpha * y[i] + (1 - alpha) * mu.hat[i - 1]
return(mu.hat)

}

alpha <- c(0.05, 0.2, 0.5)

plot(yr, LakeHuron, col = "gray", xlab = "Year", type = "l", ylab = "Depth (ft)",
main = "", las = 1)

ys_0.05 <- exp.smoothing(LakeHuron, alpha = 0.05)
ys_0.2 <- exp.smoothing(LakeHuron, alpha = 0.2)
ys_0.5 <- exp.smoothing(LakeHuron, alpha = 0.5)
lines(yr, ys_0.05, col = "green", lwd = 2)
lines(yr, ys_0.2, col = "red", lwd = 2)
lines(yr, ys_0.5, col = "blue", lwd = 2)
legend("bottomleft", legend = alpha, title = expression(alpha),

col = c("green", "red", "blue"), bty = "n", lty = 1)
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Method III: Differencing

The final method we consider for removing trends is differencing. We define the first order difference operator
∇ as

∇Yt = Yt − Yt−1 = (1 − B)Yt,

where B is the backshift operator and is defined as BYt = Yt−1. Similarly the general order difference operator
∇qYt is defined recursively as ∇[∇q−1Yt] and the backshift operator of power q is defined as BqYt = Yt−q
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Exampple

The second order difference is given by

∇2Yt = ∇[∇Yt]
= ∇[Yt − Yt−1]
= (Yt − Yt−1) − (Yt−1 − Yt−2)
= Yt − 2Yt−1 + Yt−2

= (1 − 2B + B2)Yt

Example

Consider a time series data with a linear trend (i.e., {Yt = β0 + β1t + ηt}) where ηt is a stationary time
series. Then first order differencing results in a stationary series with no trend. To see why

∇Yt = Yt − Yt−1

= (β0 + β1t + ηt) − (β0 + β1(t − 1) + ηt−1)
= β1 + ηt − ηt−1

This is the sum of a stationary series and a constant, and therefore we have successfully remove the linear
trend.

Note

1. A polynomial trend of order q can be removed by q-th order differencing.
2. By q-th order differencing a time series you are shortening its length by q.
3. Differencing does not allow you to estimate the trend, only to remove it. Therefore it is not appropriate

if the aim of the analysis is to describe the trend.

Seasonal Component Estimation

Now let’s consider the situation where a time series consists of a seasonal component only (assuming the
trend has been estimated/removed). That is

Yt = st + ηt.

with {st} having period d (i.e., st = st+jd for all integers j and t).
∑d

t=1 st = 0 and E[ηt] = 0. We can use
harmonic regression or a seasonal factor model to estimate the seasonal components, or we can use seasonal
differencing to remove the seasonality.

Harmonic Regression

A harmonic regression model has the form

st =
k∑

j=1
Ak cos(2πfj + ϕj).

For each j = 1, · · · , k:

• Aj > 0 is the amplitude of the jth cosine wave.
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• fj controls the the frequency of the j-th cosine wave (how often waves repeats).

• ϕj ∈ [−π, π] is the phase of the j-th wave (where it starts)

The above can be expressed as
k∑

j=1
(β1j cos(2πfj) + β2j sin(2πfj)) ,

where β1j = Aj cos(ϕj) and β2j = Aj sin(ϕj). Therefore, if the frequencies {fj}k
j=1 are known, we can use

regression techniques to estimate the parameters {β1j , β2j}k
j=1 by treating {cos(2πfj)}k

j=1 and {sin(2πfj)}k
j=1

as predictor variables.

Let’s use the monthly average temperature (in degrees Fahrenheit) recorded in Dubuque, IA from Jan. 1964
- Dec. 1975.

library(TSA)
data(tempdub)
time <- as.numeric(time(tempdub))
par(mar = c(4, 4, 0.8, 0.6))
plot(time, tempdub, type = "l", las = 1, xlab = "", ylab = "")
points(time, tempdub, pch = 16, col = "blue", cex = 0.6)
grid()
mtext("Time (year)", side = 1, line = 2)
mtext(expression(paste("Monthly average temperature (", degree, "F)")), side = 2, line = 2)
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First, we need to set up the harmonics (assuming yearly cycle)
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harmonics <- harmonic(tempdub, 1)
time <- as.numeric(time(tempdub))
par(mfrow = c(2, 1), las = 1, mar = c(2, 4, 0.8, 0.6))
plot(time, harmonics[, 1], type = "l", ylab = "cos")
plot(time, harmonics[, 2], type = "l", ylab = "sin")
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Next, we perform a linear regression using the harmonics we just created as the predictors

harReg <- lm(tempdub ~ harmonics)
summary(harReg)

##
## Call:
## lm(formula = tempdub ~ harmonics)
##
## Residuals:
## Min 1Q Median 3Q Max
## -11.1580 -2.2756 -0.1457 2.3754 11.2671
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 46.2660 0.3088 149.816 < 2e-16 ***
## harmonicscos(2*pi*t) -26.7079 0.4367 -61.154 < 2e-16 ***
## harmonicssin(2*pi*t) -2.1697 0.4367 -4.968 1.93e-06 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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##
## Residual standard error: 3.706 on 141 degrees of freedom
## Multiple R-squared: 0.9639, Adjusted R-squared: 0.9634
## F-statistic: 1882 on 2 and 141 DF, p-value: < 2.2e-16

plot(time, tempdub, type = "l", las = 1, xlab = "", ylab = "")
mtext("Time (year)", side = 1, line = 2)
mtext(expression(paste("Monthly average temperature (", degree, "F)")), side = 2, line = 2)
time <- as.numeric(time(tempdub))
lines(time, harReg$fitted.values, col = "blue", lty = 2)
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Seasonal factors

Harmonic regression assume the seasonal pattern has a regular shape, i.e. the height of the peaks is the
same as the depth of the troughs. Assuming the seasonal pattern repeats itself every d time points, a less
restrictive approach is to model it as

st =


β1 for t = 1, 1 + d, 1 + 2d, · · · ;
β2 for t = 2, 2 + d, 2 + 2d, · · · ;
...

...;
βd for t = d, 2d, 3d, · · · .

month = season(tempdub)
season_means <- lm(tempdub ~ month - 1)
summary(season_means)

##
## Call:
## lm(formula = tempdub ~ month - 1)
##
## Residuals:
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## Min 1Q Median 3Q Max
## -8.2750 -2.2479 0.1125 1.8896 9.8250
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## monthJanuary 16.608 0.987 16.83 <2e-16 ***
## monthFebruary 20.650 0.987 20.92 <2e-16 ***
## monthMarch 32.475 0.987 32.90 <2e-16 ***
## monthApril 46.525 0.987 47.14 <2e-16 ***
## monthMay 58.092 0.987 58.86 <2e-16 ***
## monthJune 67.500 0.987 68.39 <2e-16 ***
## monthJuly 71.717 0.987 72.66 <2e-16 ***
## monthAugust 69.333 0.987 70.25 <2e-16 ***
## monthSeptember 61.025 0.987 61.83 <2e-16 ***
## monthOctober 50.975 0.987 51.65 <2e-16 ***
## monthNovember 36.650 0.987 37.13 <2e-16 ***
## monthDecember 23.642 0.987 23.95 <2e-16 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 3.419 on 132 degrees of freedom
## Multiple R-squared: 0.9957, Adjusted R-squared: 0.9953
## F-statistic: 2569 on 12 and 132 DF, p-value: < 2.2e-16

plot(time, tempdub, type = "l", las = 1, xlab = "", ylab = "")
mtext("Time (year)", side = 1, line = 2)
mtext(expression(paste("Monthly average temperature (", degree, "F)")), side = 2, line = 2)
points(time, season_means$fitted.values, col = "blue", pch = 16, cex = 0.8)
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Seasonal Differening

The lag-d difference operator, ∇d, is defined by

∇dYt = Yt − Yt−d = (1 − Bd)Yt.

Note: This is NOT ∇d!

Example

Consider data that arise from the model Yt = β0 + β1t︸ ︷︷ ︸
µt

+st + ηt, which has a linear trend and seasonal

component that repeats itself every d time points, that is, st = st+jd for all integers j and t. Then by just
seasonal differencing (lag-d differening here) this series it becomes stationary.

∇dYt = Yt − Yt−d (1)
= [β0 + β1t + st + ηt] − [β0 + β1(t − d) + st−d + ηt−d] (2)
= dβ1 + ηt − ηt−d (3)

Let’s put trend and seasonal variation together

Here we using the CO2 concentration time series is an example. First, we can perform a linear regression
with both time and the harmonics as the covariates.

time <- as.numeric(time(co2))
harmonics <- harmonic(co2, 1)

lm_trendSeason <- lm(co2 ~ time + harmonics)
summary(lm_trendSeason)

##
## Call:
## lm(formula = co2 ~ time + harmonics)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.433 -1.323 -0.282 1.221 4.615
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.256e+03 1.391e+01 -162.155 < 2e-16 ***
## time 1.311e+00 7.033e-03 186.382 < 2e-16 ***
## harmonicscos(2*pi*t) -3.889e-01 1.120e-01 -3.474 0.00056 ***
## harmonicssin(2*pi*t) 2.772e+00 1.120e-01 24.760 < 2e-16 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 1.712 on 464 degrees of freedom
## Multiple R-squared: 0.987, Adjusted R-squared: 0.9869
## F-statistic: 1.173e+04 on 3 and 464 DF, p-value: < 2.2e-16
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par(mar = c(3.8, 4, 0.8, 0.6))
plot(time, co2, type = "l", las = 1, xlab = "", ylab = "")
points(co2, col = "blue", pch = 16, cex = 0.4)
mtext("Time (year)", side = 1, line = 2)
mtext(expression(paste("CO"[2], " Concentration (ppm)")), side = 2, line = 2.5)
grid()
lines(time, lm_trendSeason$fitted.values, col = "red", lty = 2)
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Next we are going to take a quick look of an ‘algorithm’ to do the decomposition.

STL Decomposition

STL (Seasonal and Trend decomposition using Loess) is a versatile and robust method for decomposing time
series. The STL method was developed by Cleveland et al. (1990). Below we show an example of applying
STL to Mauna Loa Atmospheric CO2 Concentration monthly time series data.

# Seasonal and Trend decomposition using Loess (STL)
par(mar = c(4, 3.6, 0.8, 0.6))
stl <- stl(co2, s.window = "periodic")
plot(stl, las = 1)
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