Lecture 10 The Normal Distributions

Readings: IntroStat Chapter 4; OpenIntro Chapter 3

STAT 8010 Statistical Methods I May 30, 2023

Normal Distributions

Sums of Normal Random Variables

Normal approximation of Binomial Distribution

Whitney Huang Clemson University

Agenda

Normal Distributions

Normal Distributions

Sums of Normal Random Variables

Probability Density Curve for Normal Random Variable

The Normal Distributions

Normal Distributions

Sums of Normal Random Variables

Normal Density Curves

Different μ but same σ^2

The Normal Distributions

Normal Distributions

Sums of Normal Random Variables

Normal approximation of Binomial Distribution

10.4

Normal Density Curves Cont'd

Same μ but different σ^2

The Normal Distributions

Normal Distributions

Sums of Normal Random Variables

Normal Density Curves

Probability density function for Normal X~N(0,1) Y~N(2.0.64) Z~N(-0.5.1.44) 0.6 0.5 4.0 ž 0.3 0.2 0.1 0.0 2 -2 0 4 х

The Normal

Normal Distributions

Sums of Normal Random Variables

- The parameter μ determines the center of the distribution
- The parameter σ^2 determines the spread of the distribution
- Also called bell-shaped distribution

Characteristics of Normal Random Variables

Let X be a Normal r.v.

- The support for $X: (-\infty, \infty)$
- Parameters: μ : mean and σ^2 : variance
- The probability density function (pdf): $\frac{1}{\sqrt{2\pi\sigma^2}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$ for $-\infty < x < \infty$
- The cumulative distribution function (cdf): No explicit form, look at the value Φ(^{x-μ}/_σ) for -∞ < x < ∞ from standard normal table
- The expected value: $E[X] = \mu$
- The variance: $Var(X) = \sigma^2$

Normal Distributions

Sums of Normal Random Variables

Standard Normal $Z \sim N(\mu = 0, \sigma^2 = 1)$

 Normal random variable X with mean μ and standard deviation σ can be converted to standard normal Z by the following :

$$Z = \frac{X - \mu}{\sigma}$$

The Normal Distributions

Normal Distributions

Sums of Normal Random Variables

Standard Normal $Z \sim N(\mu = 0, \sigma^2 = 1)$

 Normal random variable X with mean μ and standard deviation σ can be converted to standard normal Z by the following :

$$Z = \frac{X - \mu}{\sigma}$$

• The cdf of the standard normal, denoted by $\Phi(z)$, can be found from the **standard normal table**

Normal Distributions

Sums of Normal Random Variables

Standard Normal $Z \sim N(\mu = 0, \sigma^2 = 1)$

 Normal random variable X with mean μ and standard deviation σ can be converted to standard normal Z by the following :

$$Z = \frac{X - \mu}{\sigma}$$

• The cdf of the standard normal, denoted by $\Phi(z)$, can be found from the **standard normal table**

 The probability P(a ≤ X ≤ b) where X ~ N(μ, σ²) can be computed

$$P(a \le X \le b) = P(\frac{a-\mu}{\sigma} \le Z \le \frac{b-\mu}{\sigma})$$
$$= \Phi(\frac{b-\mu}{\sigma}) - \Phi(\frac{a-\mu}{\sigma})$$

The Normal Distributions

Normal Distributions

Sums of Normal Random Variables

Standard Normal Table

Normal Distributions

Sums of Normal Random Variables

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.944	0.9750	0.9756	0.9761	0.9767

Standard Normal Table Cont'd

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
15	0.9332	0.9345	0.9357	0.9370	0.9382	0 9394	0.9406	0.9418	0.9429	0 9441
1.6	0.9352	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767

Normal Distributions

Sums of Normal Random Variables

Standard Normal Table Cont'd

Normal Distributions

Sums of Normal Random Variables

The Normal Distributions

Normal Distributions

Sums of Normal Random Variables

Normal approximation of Binomial Distribution

• $\Phi(0) = .50 \Rightarrow$ Mean and Median (50_{th} percentile) for standard normal are both 0

The Normal Distributions

Normal Distributions

Sums of Normal Random Variables

Normal approximation of Binomial Distribution

• $\Phi(0) = .50 \Rightarrow$ Mean and Median (50_{th} percentile) for standard normal are both 0

• $\Phi(-z) = 1 - \Phi(z)$

The Normal Distributions

Normal Distributions

Sums of Normal Random Variables

Normal approximation of Binomial Distribution

 Φ(0) = .50 ⇒ Mean and Median (50_{th} percentile) for standard normal are both 0

• $\Phi(-z) = 1 - \Phi(z)$

• $\mathbb{P}(Z > z) = 1 - \Phi(z) = \Phi(-z)$

The Empirical Rules

The Empirical Rules provide a quick way to approximate certain probabilities for the Normal Distribution as the following table:

Interval	Percentage with interval				
$\mu \pm \sigma$	68%				
$\mu \pm 2\sigma$	95%				
$\mu \pm 3\sigma$	99.7%				

The Normal Distributions

Normal Distributions

Sums of Normal Random Variables

Example

Normal Distributions

Sums of Normal Random Variables

Normal approximation of Binomial Distribution

Let us find the following probabilities with respect to Z:

Ø Z is between -2 and 2 inclusive

The Normal Distributions

Normal Distributions

Sums of Normal Random Variables

Normal approximation of Binomial Distribution

Solution.

● $P(Z \le -1.75) = \Phi(-1.75) = .0401$ ●

The Normal Distributions

Normal Distributions

Sums of Normal Random Variables

Normal approximation of Binomial Distribution

Solution.

• $P(Z \le -1.75) = \Phi(-1.75) = .0401$

2 $P(-2 \le Z \le 2) = \Phi(2) - \Phi(-2) = .9772 - .0228 = .9544$

The Normal Distributions

Normal Distributions

Sums of Normal Random Variables

Normal approximation of Binomial Distribution

Solution.

• $P(Z \le -1.75) = \Phi(-1.75) = .0401$

2 $P(-2 \le Z \le 2) = \Phi(2) - \Phi(-2) = .9772 - .0228 = .9544$

O $P(Z < .5) = \Phi(.5) = .6915$

Example

Suppose a STAT-8020 exam score follows a normal distribution with mean 78 and variance 36. Let X to denote the exam score, answer the following questions:

- What is the probability that a randomly chosen test taker got a score greater than 84?
- Suppose the passing score for this exam is 75. What is the probability that a randomly chosen test taker got a score greater than 84 given that she/he pass the exam?
- Using the empirical rule to find the 84_{th} percentile.

Vormal Distributions

Sums of Normal Random Variables

Example

Find the following percentile with respect to Z

Normal Distributions

Sums of Normal Random Variables

Solution.

- **()** $Z_{10} = -1.28$ **()**
- 2 $Z_{55} = 0.13$
- 3 $Z_{90} = 1.28$
- > qnorm(0.1)
 [1] -1.281552
 > qnorm(0.55)
 [1] 0.1256613
 > qnorm(0.9)
 [1] 1.281552

Normal Distributions

Sums of Normal Random Variables

Example

Let *X* be Normal with a mean of 20 and a variance of 49. Find the following probabilities and percentile:

- X is between 15 and 23
- 🗿 X is more than 30 📀
- 🧿 X is more than 12 knowing it is less than 20 📀
- What is the value that is smaller than 20% of the distribution?

Normal Distributions

Sums of Normal Random Variables

Solution.

•
$$P(15 \le X \le 23) = \Phi(\frac{15-20}{7}) - \Phi(\frac{23-20}{7}) = \Phi(0.43) - \Phi(-0.71) = .6664 - .2389 = .4275$$

P(X > 30) = 1 - P(X \le 30) = 1 -
$$\Phi(\frac{30-20}{7}) = 1 - .9236 = .0764$$

$$P(X > 12|X < 20) = \frac{P(12 < X < 20)}{P(X < 20)} = \frac{\Phi(0) - \Phi(-1.14)}{\Phi(0)} = .7458$$

■
$$Z_{80} = 0.84 \Rightarrow X_{80} = \mu + Z_{80} \times \sigma = 20 + 0.84 \times \sqrt{49} = 25.88$$

Normal Distributions

Sums of Normal Random Variables

The Normal Distributions

Normal Distributions

Sums of Normal Random Variables

Normal approximation of Binomial Distribution

If $X_i \ 1 \le i \le n$ are independent normal random variables with mean μ_i are variance σ_i^2 , respectively.

If X_i $1 \le i \le n$ are independent normal random variables with mean μ_i are variance σ_i^2 , respectively.

• Let
$$S_n = \sum_{i=1}^n X_i$$
 then $S_n \sim N(\sum_{i=1}^n \mu_i, \sum_{i=1}^n \sigma_i^2)$

The Normal Distributions

Normal Distributions

Sums of Normal Random Variables

If X_i $1 \le i \le n$ are independent normal random variables with mean μ_i are variance σ_i^2 , respectively.

• Let
$$S_n = \sum_{i=1}^n X_i$$
 then $S_n \sim N(\sum_{i=1}^n \mu_i, \sum_{i=1}^n \sigma_i^2)$

The Normal Distributions

Normal Distributions

Sums of Normal Random Variables

If $X_i \ 1 \le i \le n$ are independent normal random variables with mean μ_i are variance σ_i^2 , respectively.

• Let
$$S_n = \sum_{i=1}^n X_i$$
 then $S_n \sim N(\sum_{i=1}^n \mu_i, \sum_{i=1}^n \sigma_i^2)$

• This can be applied for any integer n

Normal Distributions

Sums of Normal Random Variables

Example

Let X_1 , X_2 , and X_3 be mutually independent, Normal random variables. Let their means and standard deviations be 3k and k for k = 1, 2, and 3 respectively. Find the following distributions:

$\bigcirc \sum_{i=1}^{3} X_i$

 $X_1 + 2X_2 - 3X_3$

Normal Distributions

Sums of Normal Random Variables

The Normal Distributions

Normal Distributions

Sums of Normal Random Variables

Normal approximation of Binomial Distribution

Solution.

$$\sum_{i=1}^{3} X_i \sim N(\mu = 3 + 6 + 9 = 18, \sigma^2 = 1^2 + 2^2 + 3^2 = 14)$$

2
$$X_1 + 2X_2 - 3X_3 \sim N(\mu = 3 + 12 - 27 = -12, \sigma^2 = 1^2 + 4 \times 2^2 + 9 \times 3^2 = 98)$$

3 $X_1 + 5X_3 \sim N(\mu = 3 + 45 = 48, \sigma^2 = 1^2 + 25 \times 3^2 = 226)$

• We can use a Normal Distribution to approximate a Binomial Distribution if *n* is large

Normal Distributions

Sums of Normal Random Variables

- We can use a Normal Distribution to approximate a Binomial Distribution if *n* is large
- Rule of thumb for this approximation to be valid (in this class) is np > 5 and n(1 p) > 5

Normal Distributions

Sums of Normal Random Variables

- We can use a Normal Distribution to approximate a Binomial Distribution if *n* is large
- Rule of thumb for this approximation to be valid (in this class) is np > 5 and n(1 p) > 5
- If $X \sim Bin(n,p)$ with np > 5 and n(1-p) > 5 then we can use $X^* \sim N(\mu = np, \sigma^2 = np(1-p))$ to approximate X

Normal Distributions

Sums of Normal Random Variables

- We can use a Normal Distribution to approximate a Binomial Distribution if *n* is large
- Rule of thumb for this approximation to be valid (in this class) is np > 5 and n(1 p) > 5
- If $X \sim Bin(n,p)$ with np > 5 and n(1-p) > 5 then we can use $X^* \sim N(\mu = np, \sigma^2 = np(1-p))$ to approximate X
- Notice that Binomial is a discrete distribution but normal is a continuous distribution so that P(X* = x) = 0 ∀x

Normal Distributions

Sums of Normal Random Variables

- We can use a Normal Distribution to approximate a Binomial Distribution if *n* is large
- Rule of thumb for this approximation to be valid (in this class) is np > 5 and n(1 p) > 5
- If $X \sim Bin(n,p)$ with np > 5 and n(1-p) > 5 then we can use $X^* \sim N(\mu = np, \sigma^2 = np(1-p))$ to approximate X
- Notice that Binomial is a discrete distribution but normal is a continuous distribution so that P(X* = x) = 0 ∀x
- Continuity correction: we use P(x − 0.5 ≤ X* ≤ x + 0.5) to approximate P(X = x)

Normal Distributions

Sums of Normal Random Variables

Example

Suppose a class has 400 students (to begin with), that each student drops independently of any other student with a probability of .07. Let X be the number of students that finish this course

- Find the probability that X is between 370 and 373 inclusive
- Is an approximation appropriate for the number of students that finish the course?
- If so, what is this distribution and what are the parameter(s)?
- Find the probability that is between 370 and 373 inclusive by using the approximation

Normal Distributions

Sums of Normal Random Variables

In this lecture, we learned

Normal Distributions

• Sum of Normal Rndom Variables

• Normal approximation of Binomial Distribution

Normal Distributions

Sums of Normal Random Variables