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Normal Density Curves

Different µ but same σ2
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Normal Density Curves Cont’d

Same µ but different σ2
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Normal Density Curves
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Probability density function for Normal 
 X~N(0,1) 

 Y~N(2,0.64)  
 Z~N(-0.5,1.44)
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The parameter µ determines the center of the distribution
The parameter σ2 determines the spread of the distribution
Also called bell-shaped distribution
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Characteristics of Normal Random Variables

Let X be a Normal r.v.
The support for X: (−∞,∞)

Parameters: µ ∶ mean and σ2 ∶ variance

The probability density function (pdf): 1
√

2πσ2
e
−(x−µ)2

2σ2 for
−∞ < x < ∞

The cumulative distribution function (cdf): No explicit form,
look at the value Φ( x−µ

σ
) for −∞ < x < ∞ from standard

normal table

The expected value: E[X] = µ

The variance: Var(X) = σ2
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Standard Normal Z ∼ N(µ = 0, σ2 = 1)

Normal random variable X with mean µ and standard
deviation σ can be converted to standard normal Z by the
following :

Z = X − µ
σ

The cdf of the standard normal, denoted by Φ(z), can be
found from the standard normal table

The probability P(a ≤ X ≤ b) where X ∼ N(µ,σ2) can be
computed

P(a ≤ X ≤ b) = P(a − µ
σ
≤ Z ≤ b − µ

σ
)

= Φ(b − µ
σ
) −Φ(a − µ

σ
)
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Standard Normal Table
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Standard Normal Table Cont’d
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Standard Normal Table Cont’d
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Properties of Φ

Φ(0) = .50⇒ Mean and Median (50th percentile) for
standard normal are both 0

Φ(−z) = 1 −Φ(z)

P(Z > z) = 1 −Φ(z) = Φ(−z)
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The Empirical Rules

The Empirical Rules provide a quick way to approximate
certain probabilities for the Normal Distribution as the following
table:

Interval Percentage with interval
µ ± σ 68%
µ ± 2σ 95%
µ ± 3σ 99.7%
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Example

Let us find the following probabilities with respect to Z:

1 Z is at most −1.75

2 Z is between −2 and 2 inclusive

3 Z is less than .5
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Example Cont’d

Solution.

1 P(Z ≤ −1.75) = Φ(−1.75) = .0401

2 P(−2 ≤ Z ≤ 2) = Φ(2) −Φ(−2) = .9772 − .0228 = .9544

3 P(Z < .5) = Φ(.5) = .6915
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Example

Suppose a STAT-8020 exam score follows a normal distribution
with mean 78 and variance 36. Let X to denote the exam score,
answer the following questions:

1 What is the probability that a randomly chosen test taker
got a score greater than 84?

2 Suppose the passing score for this exam is 75. What is the
probability that a randomly chosen test taker got a score
greater than 84 given that she/he pass the exam?

3 Using the empirical rule to find the 84th percentile.
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Example

Find the following percentile with respect to Z

1 10th percentile

2 55th percentile

3 90th percentile
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Example Cont’d

Solution.

1 Z10 = −1.28

2 Z55 = 0.13

3 Z90 = 1.28



The Normal
Distributions

Normal Distributions

Sums of Normal
Random Variables

Normal approximation
of Binomial Distribution

10.19

Example

Let X be Normal with a mean of 20 and a variance of 49. Find
the following probabilities and percentile:

1 X is between 15 and 23

2 X is more than 30

3 X is more than 12 knowing it is less than 20

4 What is the value that is smaller than 20% of the
distribution?
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Example Cont’d

Solution.

1 P(15 ≤ X ≤ 23) = Φ( 15−20
7 ) −Φ(

23−20
7 ) = Φ(0.43) −Φ(−0.71) =

.6664 − .2389 = .4275

2 P(X > 30) = 1 − P(X ≤ 30) = 1 −Φ( 30−20
7 ) = 1 − .9236 = .0764

3 P(X > 12∣X < 20) = P(12<X<20)
P(X<20) =

Φ(0)−Φ(−1.14)
Φ(0) = .7458

4 Z80 = 0.84⇒ X80 = µ + Z80 × σ = 20 + 0.84 ×
√

49 = 25.88
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Sums of Normal Random Variables

If Xi 1 ≤ i ≤ n are independent normal random variables with
mean µi are variance σ2

i , respectively.

Let Sn = ∑n
i=1 Xi then Sn ∼ N(∑n

i=1 µi,∑n
i=1 σ

2
i )

This can be applied for any integer n
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Example

Let X1, X2, and X3 be mutually independent, Normal random
variables. Let their means and standard deviations be 3k and k
for k = 1, 2, and 3 respectively. Find the following distributions:

1 ∑3
i=1 Xi

2 X1 + 2X2 − 3X3

3 X1 + 5X3
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Example Cont’d

Solution.

1 ∑3
i=1 Xi ∼ N(µ = 3 + 6 + 9 = 18, σ2 = 12 + 22 + 32 = 14)

2 X1 + 2X2 − 3X3 ∼ N(µ = 3 + 12 − 27 = −12, σ2 =
12 + 4 × 22 + 9 × 32 = 98)

3 X1 + 5X3 ∼ N(µ = 3 + 45 = 48, σ2 = 12 + 25 × 32 = 226)
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Normal approximation of Binomial Distribution

We can use a Normal Distribution to approximate a
Binomial Distribution if n is large

Rule of thumb for this approximation to be valid (in this
class) is np > 5 and n(1 − p) > 5

If X ∼ Bin(n,p) with np > 5 and n(1 − p) > 5 then we can use
X∗ ∼ N(µ = np, σ2 = np(1 − p)) to approximate X

Notice that Binomial is a discrete distribution but normal is
a continuous distribution so that P(X∗ = x) = 0 ∀x

Continuity correction: we use P(x − 0.5 ≤ X∗ ≤ x + 0.5) to
approximate P(X = x)
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Example

Suppose a class has 400 students (to begin with), that each
student drops independently of any other student with a
probability of .07. Let X be the number of students that finish
this course

1 Find the probability that X is between 370 and 373
inclusive

2 Is an approximation appropriate for the number of students
that finish the course?

3 If so, what is this distribution and what are the
parameter(s)?

4 Find the probability that is between 370 and 373 inclusive
by using the approximation
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Summary

In this lecture, we learned

Normal Distributions

Sum of Normal Rndom Variables

Normal approximation of Binomial Distribution
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