Lecture 10 The Normal Distributions

Readings: IntroStat Chapter 4; OpenIntro Chapter 3

STAT 8010 Statistical Methods I May 30, 2023

Whitney Huang Clemson University

Agenda

(1) Normal Distributions

2 Sums of Normal Random Variables

3 Normal approximation of Binomial Distribution

Probability Density Curve for Normal Random Variable

Normal Distributions

Normal Density Curves

Different μ but same σ^{2}

Normal Distributions

Normal Density Curves Cont'd

Same μ but different σ^{2}

Normal Density Curves

- The parameter μ determines the center of the distribution
- The parameter σ^{2} determines the spread of the distribution
- Also called bell-shaped distribution

Characteristics of Normal Random Variables

Let X be a Normal r.v.

- The support for $X:(-\infty, \infty)$
- Parameters: μ : mean and σ^{2} : variance
- The probability density function (pdf): $\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}}$ for $-\infty<x<\infty$
- The cumulative distribution function (cdf): No explicit form, look at the value $\Phi\left(\frac{x-\mu}{\sigma}\right)$ for $-\infty<x<\infty$ from standard normal table
- The expected value: $\mathrm{E}[X]=\mu$
- The variance: $\operatorname{Var}(X)=\sigma^{2}$

Standard Normal $Z \sim N\left(\mu=0, \sigma^{2}=1\right)$

- Normal random variable X with mean μ and standard deviation σ can be converted to standard normal Z by the following :

$$
Z=\frac{X-\mu}{\sigma}
$$

Normal Distributions

Standard Normal $Z \sim N\left(\mu=0, \sigma^{2}=1\right)$

- Normal random variable X with mean μ and standard deviation σ can be converted to standard normal Z by the following :

$$
Z=\frac{X-\mu}{\sigma}
$$

- The cdf of the standard normal, denoted by $\Phi(z)$, can be found from the standard normal table

Standard Normal $Z \sim N\left(\mu=0, \sigma^{2}=1\right)$

- Normal random variable X with mean μ and standard deviation σ can be converted to standard normal Z by the following :

$$
Z=\frac{X-\mu}{\sigma}
$$

- The cdf of the standard normal, denoted by $\Phi(z)$, can be found from the standard normal table
- The probability $\mathrm{P}(a \leq X \leq b)$ where $X \sim N\left(\mu, \sigma^{2}\right)$ can be computed

$$
\begin{aligned}
& \mathrm{P}(a \leq X \leq b)=\mathrm{P}\left(\frac{a-\mu}{\sigma} \leq Z \leq \frac{b-\mu}{\sigma}\right) \\
& =\Phi\left(\frac{b-\mu}{\sigma}\right)-\Phi\left(\frac{a-\mu}{\sigma}\right)
\end{aligned}
$$

Standard Normal Table

$\mathrm{P}\left(-\infty\right.$ to $\left.\mathrm{z}^{*}\right)=0.9750$

\mathbf{z}	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 2}$	$\mathbf{0 . 0 3}$	$\mathbf{0 . 0 4}$	$\mathbf{0 . 0 5}$	$\mathbf{0 . 0 6}$	$\mathbf{0 . 0 7}$	$\mathbf{0 . 0 8}$	$\mathbf{0 . 0 9}$
$\mathbf{1 . 5}$	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
$\mathbf{1 . 6}$	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
$\mathbf{1 . 7}$	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
$\mathbf{1 . 8}$	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9680	0.9693	0.9699	0.9706
$\mathbf{1 . 9}$	0.9713	0.9719	0.9726	0.9732	0.9738	0.9×44	$\mathbf{0 . 9 7 5 0}$	0.9756	0.9761	0.9767

Standard Normal Table Cont'd

Normal Distributions
Sumts of Normal
Random Variables

\mathbf{z}	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 2}$	$\mathbf{0 . 0 3}$	$\mathbf{0 . 0 4}$	$\mathbf{0 . 0 5}$	$\mathbf{0 . 0 6}$	$\mathbf{0 . 0 7}$	$\mathbf{0 . 0 8}$	$\mathbf{0 . 0 9}$
$\mathbf{1 . 5}$	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
$\mathbf{1 . 6}$	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
$\mathbf{1 . 7}$	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
$\mathbf{1 . 8}$	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
$\mathbf{1 . 9}$	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	$\mathbf{0 . 9 7 5 0}$	0.9756	0.9761	0.9767

Standard Normal Table Cont'd

$\mathrm{P}(0<\mathrm{Z}<1.96)=0.9750-0.5$
Example:
$\mathrm{P}(0<\mathrm{Z}<1.96)=0.4750$

\mathbf{z}	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 2}$	$\mathbf{0 . 0 3}$	$\mathbf{0 . 0 4}$	$\mathbf{0 . 0 5}$	$\mathbf{0 . 0 6}$	$\mathbf{0 . 0 7}$	$\mathbf{0 . 0 8}$	$\mathbf{0 . 0 9}$
$\mathbf{1 . 5}$	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
$\mathbf{1 . 6}$	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
$\mathbf{1 . 7}$	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
$\mathbf{1 . 8}$	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
$\mathbf{1 . 9}$	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	$\mathbf{0 . 9 7 5 0}$	0.9756	0.9761	0.9767

Properties of Φ

- $\Phi(0)=.50 \Rightarrow$ Mean and Median ($50_{t h}$ percentile) for standard normal are both 0

Properties of Φ

- $\Phi(0)=.50 \Rightarrow$ Mean and Median ($50_{t h}$ percentile) for standard normal are both 0
- $\Phi(-z)=1-\Phi(z)$

Properties of Φ

- $\Phi(0)=.50 \Rightarrow$ Mean and Median ($50_{t h}$ percentile) for standard normal are both 0
- $\Phi(-z)=1-\Phi(z)$
- $\mathbb{P}(Z>z)=1-\Phi(z)=\Phi(-z)$

The Empirical Rules

The Empirical Rules provide a quick way to approximate certain probabilities for the Normal Distribution as the following table:

Interval	Percentage with interval
$\mu \pm \sigma$	68%
$\mu \pm 2 \sigma$	95%
$\mu \pm 3 \sigma$	99.7%

Example

Let us find the following probabilities with respect to Z :

© Z is at most -1.75
(2) Z is between -2 and 2 inclusive
(3) Z is less than .5

Example Cont'd

Solution.

(1) $\mathrm{P}(Z \leq-1.75)=\Phi(-1.75)=.0401$

Example Cont'd

Solution.

(1) $\mathrm{P}(Z \leq-1.75)=\Phi(-1.75)=.0401$
(2) $\mathrm{P}(-2 \leq Z \leq 2)=\Phi(2)-\Phi(-2)=.9772-.0228=.9544$

Example Cont'd

Solution.

(1) $\mathrm{P}(Z \leq-1.75)=\Phi(-1.75)=.0401$
(2) $\mathrm{P}(-2 \leq Z \leq 2)=\Phi(2)-\Phi(-2)=.9772-.0228=.9544$
(3) $\mathrm{P}(Z<.5)=\Phi(.5)=.6915$

Suppose a STAT-8020 exam score follows a normal distribution with mean 78 and variance 36 . Let X to denote the exam score, answer the following questions:

- What is the probability that a randomly chosen test taker got a score greater than 84 ?
(2) Suppose the passing score for this exam is 75 . What is the probability that a randomly chosen test taker got a score greater than 84 given that she/he pass the exam?
(0) Using the empirical rule to find the $84_{t h}$ percentile.

Example

Find the following percentile with respect to Z

- $10_{t h}$ percentile
(2) $55_{t h}$ percentile
(3) $90_{t h}$ percentile

Example Cont'd

Solution.

(1) $Z_{10}=-1.28$
(2) $Z_{55}=0.13$
(3) $Z_{90}=1.28$
> qnorm(0.1)
[1] -1.281552
> qnorm(0.55)
[1] 0.1256613
$>$ qnorm(0.9)
[1] 1.281552

Example

Let X be Normal with a mean of 20 and a variance of 49 . Find the following probabilities and percentile:

- X is between 15 and 23
(2) X is more than 30
(X is more than 12 knowing it is less than 20
- What is the value that is smaller than 20% of the distribution?

Example Cont'd

Solution.

(1) $\mathrm{P}(15 \leq X \leq 23)=\Phi\left(\frac{15-20}{7}\right)-\Phi\left(\frac{23-20}{7}\right)=\Phi(0.43)-\Phi(-0.71)=$ $.6664-.2389=.4275$
(2) $\mathrm{P}(X>30)=1-\mathrm{P}(X \leq 30)=1-\Phi\left(\frac{30-20}{7}\right)=1-.9236=.0764$
(3) $\mathrm{P}(X>12 \mid X<20)=\frac{\mathrm{P}(12<X<20)}{\mathbb{P}(X<20)}=\frac{\Phi(0)-\Phi(-1.14)}{\Phi(0)}=.7458$
(1) $Z_{80}=0.84 \Rightarrow X_{80}=\mu+Z_{80} \times \sigma=20+0.84 \times \sqrt{49}=25.88$

Sums of Normal Random Variables

If $X_{i} 1 \leq i \leq n$ are independent normal random variables with mean μ_{i} are variance σ_{i}^{2}, respectively.

Sums of Normal Random Variables

If $X_{i} 1 \leq i \leq n$ are independent normal random variables with mean μ_{i} are variance σ_{i}^{2}, respectively.

- Let $S_{n}=\sum_{i=1}^{n} X_{i}$ then $S_{n} \sim N\left(\sum_{i=1}^{n} \mu_{i}, \sum_{i=1}^{n} \sigma_{i}^{2}\right)$

Sums of Normal Random Variables

If $X_{i} 1 \leq i \leq n$ are independent normal random variables with mean μ_{i} are variance σ_{i}^{2}, respectively.

- Let $S_{n}=\sum_{i=1}^{n} X_{i}$ then $S_{n} \sim N\left(\sum_{i=1}^{n} \mu_{i}, \sum_{i=1}^{n} \sigma_{i}^{2}\right)$

Sums of Normal Random Variables

If $X_{i} 1 \leq i \leq n$ are independent normal random variables with mean μ_{i} are variance σ_{i}^{2}, respectively.

- Let $S_{n}=\sum_{i=1}^{n} X_{i}$ then $S_{n} \sim N\left(\sum_{i=1}^{n} \mu_{i}, \sum_{i=1}^{n} \sigma_{i}^{2}\right)$
- This can be applied for any integer n

Example

Let X_{1}, X_{2}, and X_{3} be mutually independent, Normal random variables. Let their means and standard deviations be $3 k$ and k for $k=1,2$, and 3 respectively. Find the following distributions:
(1) $\sum_{i=1}^{3} X_{i}$
(c) $X_{1}+2 X_{2}-3 X_{3}$
(c) $X_{1}+5 X_{3}$

Example Cont'd

Normal Distributions
Sums of Normal Random Variables

Solution.
(1) $\sum_{i=1}^{3} X_{i} \sim N\left(\mu=3+6+9=18, \sigma^{2}=1^{2}+2^{2}+3^{2}=14\right)$
(2) $X_{1}+2 X_{2}-3 X_{3} \sim N\left(\mu=3+12-27=-12, \sigma^{2}=\right.$ $\left.1^{2}+4 \times 2^{2}+9 \times 3^{2}=98\right)$
(0) $X_{1}+5 X_{3} \sim N\left(\mu=3+45=48, \sigma^{2}=1^{2}+25 \times 3^{2}=226\right)$

Normal approximation of Binomial Distribution

- We can use a Normal Distribution to approximate a Binomial Distribution if n is large Normal Distributions

Normal approximation of Binomial Distribution

- We can use a Normal Distribution to approximate a Binomial Distribution if n is large
- Rule of thumb for this approximation to be valid (in this class) is $n p>5$ and $n(1-p)>5$

Normal approximation of Binomial Distribution

- We can use a Normal Distribution to approximate a Binomial Distribution if n is large
- Rule of thumb for this approximation to be valid (in this class) is $n p>5$ and $n(1-p)>5$
- If $X \sim \operatorname{Bin}(n, p)$ with $n p>5$ and $n(1-p)>5$ then we can use $X^{*} \sim \mathrm{~N}\left(\mu=n p, \sigma^{2}=n p(1-p)\right)$ to approximate X

Normal approximation of Binomial Distribution

- We can use a Normal Distribution to approximate a Binomial Distribution if n is large
- Rule of thumb for this approximation to be valid (in this class) is $n p>5$ and $n(1-p)>5$
- If $X \sim \operatorname{Bin}(n, p)$ with $n p>5$ and $n(1-p)>5$ then we can use $X^{*} \sim \mathrm{~N}\left(\mu=n p, \sigma^{2}=n p(1-p)\right)$ to approximate X
- Notice that Binomial is a discrete distribution but normal is a continuous distribution so that $\mathbb{P}\left(X^{*}=x\right)=0 \forall x$

Normal approximation of Binomial Distribution

- We can use a Normal Distribution to approximate a Binomial Distribution if n is large
- Rule of thumb for this approximation to be valid (in this class) is $n p>5$ and $n(1-p)>5$
- If $X \sim \operatorname{Bin}(n, p)$ with $n p>5$ and $n(1-p)>5$ then we can use $X^{*} \sim \mathrm{~N}\left(\mu=n p, \sigma^{2}=n p(1-p)\right)$ to approximate X
- Notice that Binomial is a discrete distribution but normal is a continuous distribution so that $\mathbb{P}\left(X^{*}=x\right)=0 \forall x$
- Continuity correction: we use $\mathbb{P}\left(x-0.5 \leq X^{*} \leq x+0.5\right)$ to approximate $\mathbb{P}(X=x)$

Example

Suppose a class has 400 students (to begin with), that each student drops independently of any other student with a probability of .07 . Let X be the number of students that finish this course
(1) Find the probability that X is between 370 and 373 inclusive
(2) Is an approximation appropriate for the number of students that finish the course?
(3) If so, what is this distribution and what are the parameter(s)?
(9) Find the probability that is between 370 and 373 inclusive by using the approximation

Summary

In this lecture, we learned

- Normal Distributions
- Sum of Normal Rndom Variables
- Normal approximation of Binomial Distribution

