Lecture 11 Sampling Distribution & Central Limit Theorem Readings: IntroStat Chapters 4 & 5

STAT 8010 Statistical Methods I May 31, 2023

> Whitney Huang Clemson University

Sampling Distribution & Central Limit Theorem

Sampling Distribution

Central Limit Theorem (CLT)

Agenda

Sampling Distribution

Chi-Square, Student's t-, and F-Distributions

Sampling Distribution & Central Limit Theorem

Sampling Distribution

Central Limit Theorem (CLT)

 Independent random variables X₁, X₂, ..., X_n with the same distribution are called a random sample

Sampling Distribution

Central Limit Theorem (CLT)

- Independent random variables *X*₁, *X*₂, …, *X_n* with the same distribution are called a random sample
- A statistic is a function of a random sample

Example:

Sampling Distribution

Central Limit Theorem (CLT)

- Independent random variables X₁, X₂, ..., X_n with the same distribution are called a random sample
- A statistic is a function of a random sample

Example:

• Sample mean: $\bar{X}_n = \sum_{i=1}^n X_i/n$

Sampling

Sampling Distribution

Central Limit Theorem (CLT)

- Independent random variables X₁, X₂, ..., X_n with the same distribution are called a random sample
- A statistic is a function of a random sample

Example:

- Sample mean: $\bar{X}_n = \sum_{i=1}^n X_i/n$
- Sample variance: $s_n^2 = \sum_{i=1}^n (X_i \overline{X}_n)^2 / (n-1)$

Sampling

Sampling Distribution

Central Limit Theorem (CLT)

- Independent random variables X₁, X₂, ..., X_n with the same distribution are called a random sample
- A statistic is a function of a random sample

Example:

- Sample mean: $\bar{X}_n = \sum_{i=1}^n X_i/n$
- Sample variance: $s_n^2 = \sum_{i=1}^n (X_i \overline{X}_n)^2 / (n-1)$
- Sample maximum: $M_n = \max_{i=1}^n X_i$

Sampling

Sampling Distribution

Central Limit Theorem (CLT)

- Independent random variables X₁, X₂, ..., X_n with the same distribution are called a random sample
- A statistic is a function of a random sample

Example:

- Sample mean: $\bar{X}_n = \sum_{i=1}^n X_i/n$
- Sample variance: $s_n^2 = \sum_{i=1}^n (X_i \overline{X}_n)^2 / (n-1)$
- Sample maximum: $M_n = \max_{i=1}^n X_i$
- The probability distribution of a statistic is called its sampling distribution

Sampling

Sampling Distribution

Central Limit Theorem (CLT)

Example

Suppose X_1, X_2, \dots, X_n is a random sample from a N(μ, σ^2) population, Find the sampling distribution of sample mean.

Sampling Distribution

Central Limit Theorem

Example

Suppose X_1, X_2, \dots, X_n is a random sample from a N(μ, σ^2) population, Find the sampling distribution of sample mean.

 $\bar{X}_n = \frac{\sum_{i=1}^n X_i}{n} = \sum_{i=1}^n \frac{1}{n} X_i$. From last lecture we know that sum of normal r.v.s is still a normal r.v. Hence we only need to figure its mean and variance.

$$E[\bar{X}_n] = \sum_{i=1}^n \frac{1}{n}\mu = \mu$$
$$Var[\bar{X}_n] = \sum_{i=1}^n \frac{1}{n^2}\sigma^2 = \frac{\sigma^2}{n}$$

Therefore, we have $\bar{X}_n \sim N(\mu, \frac{\sigma^2}{n})$

Sampling Distribution & Central Limit Theorem

Sampling Distribution

Central Limit Theorem

Central Limit Theorem (CLT)

CLT

The **sampling distribution** of the **mean** will become approximately **normally distributed** as the **sample size becomes larger**, **irrespective of the shape of the population distribution**!

Sampling

Sampling Distribution

Central Limit Theorem (CLT)

Let
$$X_1, X_2, \dots, X_n \stackrel{i.i.d.}{\longrightarrow} F$$
 with $\mu = \mathbb{E}[X_i]$ and $\sigma^2 = \operatorname{Var}[X_i]$.
Then $\overline{X}_n = \frac{\sum_{i=1}^n X_i}{n} \stackrel{d}{\to} \mathbb{N}(\mu, \frac{\sigma^2}{n})$ as $n \to \infty$.

CLT In Action

- Generate 100 (n) random numbers from an Exponential distribution (population distribution)
- Output the sample mean of these 100 random numbers
- Repeat this process 120 times

Sampling Distribution

Central Limit Theorem (CLT)

CLT: Sample Size (*n*) and the Normal Approximation

Normal

Sampling Distribution & Central Limit Theorem

Sampling Distribution

Central Limit Theorem (CLT)

Why CLT is Important?

• In many cases, we would like to make statistical inference about the population mean μ

- The sample mean X
 _n is a sensible estimator for the population mean
- CLT tells us the **distribution** of our estimator $\Rightarrow \bar{X}_n \approx N(\mu, \frac{\sigma^2}{n})$

Applications: Confidence Interval, Hypothesis Testing

Sampling Distribution

Central Limit Theorem (CLT)

CLT for Sample Proportions

When (binary) observations are independent and the sample size is sufficiently large, the sample proportion of success, denoted by \hat{p} , will tend to follow a normal distribution with the following mean and variance:

$$\mu_{\hat{p}} = p; \qquad \operatorname{Var}(\hat{p}) = \frac{p(1-p)}{n}$$

 $\hat{p} = \frac{X}{n}$, where X is a binomial random variable with parameters n and p. Then we have

$$E[\hat{p}] = E[X/n] = \frac{1}{n}E[X] = \frac{1}{n}np = p$$
$$Var(\hat{p}) = Var[X/n] = \frac{1}{n^2}Var(X) = \frac{1}{n^2}np(1-p) = \frac{p(1-p)}{n}$$

Normal distribution approximation is obtained based on normal approximation to binomial when *n* sufficiently large (e.g., $np \le 5$ and $n(1-p) \ge 5$)

Sampling Distribution & Central Limit Theorem

Sampling Distribution

Central Limit Theorem CLT)

Chi-Square (χ^2) Distribution

If Z_1, \dots, Z_r are independent, standard normal random variables, then the sum of their squares,

 $Q = \sum_{i=1}^{\prime} Z_i^2$

 $O \sim \chi_r^2$

is distributed according to the chi-squared distribution with r degrees of freedom. It is usually denoted as

Chi-squared test for assessing

- Goodness of fit
- Independence
- Homogeneity

Sampling Distribution

Central Limit Theorem (CLT)

Student's t Distribution

If $Z \sim N(0,1)$ and $V \sim \chi_r^2$ are independent, then the random variable:

 $\frac{Z}{\sqrt{V/r}}$

follows a t-distribution with *r* degrees of freedom. Applications:

CLT with known σ :

CLT with unknown σ :

 $Z = \frac{\bar{X}_n - \mu}{\frac{\sigma}{\sqrt{n}}} \xrightarrow{d} N(0, 1) \qquad \qquad T = \frac{\bar{X}_n - \mu}{\frac{s_n}{\sqrt{n}}} \xrightarrow{d} t_{df=n-1}$

Sampling Distribution

Central Limit Theorem (CLT)

F-Distribution

If U and V are independent chi-square random variables with and degrees of freedom, r_1 and r_2 , respectively, then:

$$F = \frac{U/r_1}{V/r_2}$$

follows an F-distribution with numerator degrees of freedom r_1 and denominator degrees of freedom r_2 . We write

Applications:

- Testing the equality of variances of two normal populations
- Testing the equality of means of k (>2) normal populations ⇒ ANOVA

Sampling Distribution

Central Limit Theorem (CLT)

In this lecture, we learned

- Sampling Distributions
- Central Limit Theorem (CLT)

• Chi-Squared, Student's t, and F-distributions

Sampling Distribution

Central Limit Theorem (CLT)