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Sampling Distribution

@ Independent random variables Xi, X,, ---, X,, with the same
distribution are called a random sample

@ A statistic is a function of a random sample
Example:

o Sample mean: X, = YL, Xi/n

o Sample variance: s, = Y11, (Xi — X,)?/(n - 1)

e Sample maximum: M, = max, X;
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Sampling Distribution

@ Independent random variables Xi, X,, ---, X,, with the same
distribution are called a random sample

@ A statistic is a function of a random sample
Example:

o Sample mean: X, = YL, Xi/n

o Sample variance: s, = Y11, (Xi — X,)?/(n - 1)

e Sample maximum: M, = max, X;

@ The probability distribution of a statistic is called its
sampling distribution
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Suppose Xi,X,, -, X,, is a random sample from a N(u, 0?)
population, Find the sampling distribution of sample mean.
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Suppose Xi,X,, -, X,, is a random sample from a N(u, 0?)
population, Find the sampling distribution of sample mean.

Sampling Distribution

X, = % =y, %X,». From last lecture we know that sum of
normal r.v.s is still a normal r.v. Hence we only need to figure
its mean and variance.

B |
E[X,]=) —p=p
i=1
B noq ) 2
Var[Xn] = Z EU = 7

Therefore, we have X, ~ N(u, "72)
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The sampling distribution of the mean will become [

approximately normally distributed as the sample size
becomes larger, irrespective of the shape of the
population distribution!

Let X, X, X, "% F with 1 = E[X;] and ¢? = Var[X;].
Then X, = Z=% S N(, 2) as n — co.




CLT In Action SomIne
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@ Generate 100 (rn) random numbers from an Exponential CLEMS®N
distribution (population distribution) LEIVERS T

@ Compute the sample mean of these 100 random numbers
© Repeat this process 120 times

Central Limit Theorem
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CLT: Sample Size (n) and the Normal Approximation

Exponential

Density
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@ In many cases, we would like to make statistical inference
about the population mean p

Central Limit Theorem

o The sample mean X, is a sensible estimator for the
population mean

o CLT tells us thze distribution of our estimator
= Xu % N(u, %)

@ Applications: Confidence Interval, Hypothesis Testing
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When (binary) observations are independent and the sample CLEMS@N
size is sufficiently large, the sample proportion of success,

denoted by p, will tend to follow a normal distribution with the e
following mean and variance: ©LT)

p(l-p)

wp=p;  Var(p) =

v

p =%, where X is a binomial random variable with parameters n
and| p- Then we have

; 1 1
E[p] = E[X/n] = E[X]= np=p
Var(p) = Var[X/n] = %Var(X) = iznp(l -p)= rl=p)
n n n
Normal distribution approximation is obtained based on normal

approximation to binomial when » sufficiently large (e.g., np <5
and n(1-p) > 5)



Chi-Square () Distribution

If Z,,---,Z, are independent, standard normal random variables,
then the sum of their squares,

is distributed according to the chi-squared distribution with r
degrees of freedom. It is usually denoted as

2
O~ X
Probability density function A =
@) ¥ Appllcatlons _
s rl Chi-squared test for assessing
0.4 = izj
03 L @ Goodness of fit

@ Independence

= @ Homogeneity
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Student’s t Distribution

Sampling
Distribution &
If Z~N(0,1) and V ~ x? are independent, then the random heorem
variable: P CLEMS&N

VV/r
follows a t-distribution with » degrees of freedom.
Applications:
CLT with known ¢

Chi-Square, Student’s
t-, and F-Distributions

CLT with unknown o:

X, - X,
z=22"E 4 N, 1) =22 E S
v v
—— Normal
— t(df=100)

— t(df=10)

1.1



F-Distribution At

Central Limit

If U and V are independent chi-square random variables with TR
and degrees of freedom, r; and r,, respectively, then: CLEMS@N
F- (//rl
‘7/r2

Chi-Square, Student’s

follows an F-distribution with numerator degrees of freedom r, o O RIS
and denominator degrees of freedom r,. We write

F~F,

e Applications:
r=2r=4

@ Testing the equality of
variances of two normal
populations

@ Testing the equality of
means of k (>2) normal
populations = ANOVA

11.12
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In this lecture, we learned

Chi-Square, Student's
t-, and F-Distributions

@ Sampling Distributions

@ Central Limit Theorem (CLT)

@ Chi-Squared, Student’s t, and F-distributions

11.13
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