Lecture 12 Inference for One Population Mean

Readings: IntroStat Chapter 5; OpenIntro Chapter 7.1

STAT 8010 Statistical Methods I June 1, 2023 Inference for One Population Mean

Statistical Inferences

Point/Interva Estimation

Confidence Intervals

Whitney Huang Clemson University

Agenda

Inference for One Population Mean

Statistical Inferences

Point/Interva Estimation

Confidence Intervals

Statistical Inferences

Point/Interval Estimation

For the rest of the semester, we will focus on conducting statistical inferences for the following tasks:

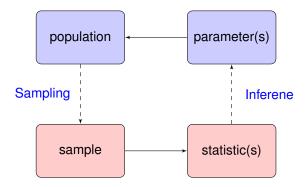
- Estimating one population mean
- Comparing two population means
- Comparing more than two population means
- Estimating population proportions
- Estimating relationship between two quantitative variables

Statistical Inferences

Point/Interva Estimation

Statistical Inference Cont'd

• We use parameters to describe the population **Example:** population mean (μ_X) ; population variance (σ_X^2)



• We use statistics of a sample to infer the population **Example:** sample mean (\bar{X}) ; sample variance (s_X^2)

Inference for One Population Mean

Statistical Inferences

Point/Interval Estimation

Estimating Population Mean μ

Goal: To estimate the population mean using a (representative) sample:

• The sample mean, $\bar{X}_n = \frac{\sum_i^n X_i}{n}$, is a reasonable point estimate of the population mean μ_X

Statistical Inferences

Point/Interva Estimation

Estimating Population Mean μ

Goal: To estimate the population mean using a (representative) sample:

- The sample mean, $\bar{X}_n = \frac{\sum_i^n X_i}{n}$, is a reasonable point estimate of the population mean μ_X
- Need to quantify the level of uncertainty of the point estimate ⇒ Interval estimation

Statistical Inferences

Point/Interva Estimation

Estimating Population Mean μ

Goal: To estimate the population mean using a (representative) sample:

- The sample mean, $\bar{X}_n = \frac{\sum_i^n X_i}{n}$, is a reasonable point estimate of the population mean μ_X
- Need to quantify the level of uncertainty of the point estimate ⇒ Interval estimation
- Need to figure out the sampling distribution of X
 n in order to construct interval estimates ⇒ Central Limit Theorem (CLT)

Statistical Inferences

Point/Interva Estimation

Why CLT is important?

CLT tells us the distribution of our estimator

$$\bar{X}_n \approx \mathrm{N}(\mu, \frac{\sigma^2}{n})$$

- The distribution of \bar{X}_n is center around the true mean μ
- The variance of \bar{X}_n is decrease with n
- With normal approximation of the sampling distribution of \bar{X}_n , we can perform interval estimation about μ
- Applications: Confidence Interval, Hypothesis testing

Statistical Inferences

Point/Interva Estimation

Confidence Intervals (CIs) for μ

• Let's assume we know the population variance σ^2 (will relax this assumption later on)

Statistical Inferences

Point/Interval Estimation

Confidence Intervals (CIs) for μ

• Let's assume we know the population variance σ^2 (will relax this assumption later on)

•
$$(1 - \alpha) \times 100\%$$
 Cl for μ :

$$\left[\bar{X}_n - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \bar{X}_n + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right],$$

where $z_{\frac{\alpha}{2}}$ is the $1 - \frac{\alpha}{2}$ percentile of $Z \sim N(0, 1)$

Inference for One Population Mean

Statistical Inferences

Point/Interval Estimation

Confidence Intervals (CIs) for μ

• Let's assume we know the population variance σ^2 (will relax this assumption later on)

•
$$(1 - \alpha) \times 100\%$$
 Cl for μ :

$$\left[\bar{X}_n - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \bar{X}_n + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right]$$

where $z_{\frac{\alpha}{2}}$ is the $1 - \frac{\alpha}{2}$ percentile of $Z \sim N(0, 1)$

• $\frac{\sigma}{\sqrt{n}}$ is the standard error of \bar{X}_n , that is, the standard deviation of its sampling distribution

Statistical Inferences

Point/Interval Estimation

Making Sense of Confidence Intervals

For any $\alpha \in (0, 1)$:

$$P\left(\bar{X}_n - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{X}_n + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right)$$
$$= P\left(-z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \le \bar{X}_n - \mu \le z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right)$$
$$= P\left(-z_{\frac{\alpha}{2}} \le \frac{\bar{X}_n - \mu}{\frac{\sigma}{\sqrt{n}}} \le z_{\frac{\alpha}{2}}\right)$$
$$= P\left(-z_{\frac{\alpha}{2}} \le Z \le z_{\frac{\alpha}{2}}\right)$$
$$= \Phi\left(z_{\frac{\alpha}{2}}\right) - \Phi\left(-z_{\frac{\alpha}{2}}\right)$$
$$= 1 - \frac{\alpha}{2} - \frac{\alpha}{2} = 1 - \alpha$$

Statistical Inferences

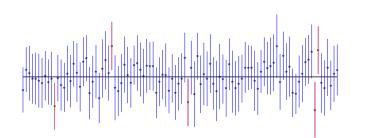
Point/Interval Estimation

Making Sense of Confidence Intervals Cont'd

Inference for One Population Mean

Statistical Inferences

Point/Interval Estimation



Example: Average Height

We measure the heights of 40 randomly chosen men, and get a mean height of 5'9" (\approx 175cm). Suppose we know the standard deviation of men's heights is 4" (\approx 10cm). Find the 95% confidence interval of the true mean height of ALL men.

Inference for One Population Mean

Statistical Inferences

Point/Interval Estimation

O Point estimate:
$$\overline{X}_{40} = \frac{\sum_{i=1}^{40} X_i}{40} = 69$$
 inches

Inference for One Population Mean

Statistical Inferences

Point/Interval Estimation

O Point estimate:
$$\bar{X}_{40} = \frac{\sum_{i=1}^{40} X_i}{40} = 69$$
 inches

2 Population standard deviation: $\sigma = 4$ inches

Statistical Inferences

Point/Interva Estimation

O Point estimate:
$$\bar{X}_{40} = \frac{\sum_{i=1}^{40} X_i}{40} = 69$$
 inches

② Population standard deviation: $\sigma = 4$ inches

Standard error of
$$\bar{X}_{n=40} = \frac{\sigma}{\sqrt{n}} = \frac{4}{\sqrt{40}} = 0.63$$
 inches

Statistical Inferences

Point/Interva Estimation

O Point estimate:
$$\bar{X}_{40} = \frac{\sum_{i=1}^{40} X_i}{40} = 69$$
 inches

2 Population standard deviation: $\sigma = 4$ inches

Standard error of
$$\bar{X}_{n=40} = \frac{\sigma}{\sqrt{n}} = \frac{4}{\sqrt{40}} = 0.63$$
 inches

95%CI: Need to find $z_{0.05/2} = 1.96$ from the Z-table

Statistical Inferences

Point/Interva Estimation

O Point estimate:
$$\overline{X}_{40} = \frac{\sum_{i=1}^{40} X_i}{40} = 69$$
 inches

2 Population standard deviation: $\sigma = 4$ inches

Standard error of
$$\bar{X}_{n=40} = \frac{\sigma}{\sqrt{n}} = \frac{4}{\sqrt{40}} = 0.63$$
 inches

- 95%CI: Need to find $z_{0.05/2} = 1.96$ from the Z-table
- **0** 95% CI for μ_X is:

 $\begin{bmatrix} 69 - 1.96 \times 0.63, 69 + 1.96 \times 0.63 \end{bmatrix}$ = [67.77, 70.23]

Statistical Inferences

Point/Interva Estimation

In contrast with the point estimate, X
_n, a (1 – α)% CI is an interval estimate, where the length of CI reflects our estimation uncertainty

Statistical Inferences

Point/Interval Estimation

- In contrast with the point estimate, X
 _n, a (1 α)% CI is an interval estimate, where the length of CI reflects our estimation uncertainty
- Typical α values: 0.01, 0.05, 0.1 ⇒ 99%, 95%, 90% confidence intervals. Interpretation: If we were to take random samples over and over again, then (1 α)% of these confidence intervals will contain the true μ

Inference for One Population Mean

Statistical Inferences

Point/Interval Estimation

- In contrast with the point estimate, *X
 _n*, a (1 − α)% CI is an interval estimate, where the length of CI reflects our estimation uncertainty
- Typical α values: 0.01, 0.05, 0.1 ⇒ 99%, 95%, 90% confidence intervals. Interpretation: If we were to take random samples over and over again, then (1 α)% of these confidence intervals will contain the true μ
- The length of a CI depends on

Inference for One Population Mean

Statistical Inferences

Point/Interval Estimation

- In contrast with the point estimate, *X
 _n*, a (1 − α)% CI is an interval estimate, where the length of CI reflects our estimation uncertainty
- Typical α values: 0.01, 0.05, 0.1 \Rightarrow 99%, 95%, 90% confidence intervals. Interpretation: If we were to take random samples over and over again, then $(1 \alpha)\%$ of these confidence intervals will contain the true μ
- The length of a CI depends on
 - Population Standard Deviation: σ

Inference for One Population Mean

Statistical Inferences

Point/Interval Estimation

- In contrast with the point estimate, *X
 _n*, a (1 − α)% CI is an interval estimate, where the length of CI reflects our estimation uncertainty
- Typical α values: 0.01, 0.05, 0.1 \Rightarrow 99%, 95%, 90% confidence intervals. Interpretation: If we were to take random samples over and over again, then $(1 \alpha)\%$ of these confidence intervals will contain the true μ
- The length of a CI depends on
 - Population Standard Deviation: σ
 - Confidence Level: 1α

Inference for One Population Mean

Statistical Inferences

Point/Interval Estimation

- In contrast with the point estimate, *X
 _n*, a (1 − α)% CI is an interval estimate, where the length of CI reflects our estimation uncertainty
- Typical α values: 0.01, 0.05, 0.1 \Rightarrow 99%, 95%, 90% confidence intervals. Interpretation: If we were to take random samples over and over again, then $(1 \alpha)\%$ of these confidence intervals will contain the true μ
- The length of a CI depends on
 - Population Standard Deviation: σ
 - Confidence Level: 1α
 - Sample Size: n

Inference for One Population Mean

Statistical Inferences

Point/Interval Estimation

Inference for One Population Mean

Statistical Inferences

Point/Interval Estimation

- We may want to estimate μ with a confidence interval with a predetermined margin of error (i.e. $z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$)
- For example, in estimating the true mean height of All men we may want our CI to be just 0.5 inches in width
- The question is then, "how many observations do we need to take so that we have the desired margin of error?"

Sample Size Calculation Cont'd

To compute the sample size needed to get a CI for μ with a specified margin of error, we use the formula below

$$n = \left(\frac{z_{\alpha/2} \times \sigma}{\text{Margin of error}}\right)^2$$

0

Exercise: Derive this formula using margin of error $= z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$

Inference for One Population Mean

Statistical Inferences

Point/Interva Estimation

Average Height Example Revisited

Compute the sample size needed in order to estimate the true mean height of All men such that the 95% CI to be 0.5 inches in width

Statistical Inferences

Point/Interva Estimation

Average Height Example Revisited

Compute the sample size needed in order to estimate the true mean height of All men such that the 95% CI to be 0.5 inches in width

Length of CI:
$$2 \times z_{0.025} \frac{\sigma}{\sqrt{n}} = 2 \times$$
 margin of error

Want to find *n* s.t.
$$z_{0.025} \frac{\sigma}{\sqrt{n}} = 0.25$$

We have
$$n = \left(\frac{1.96 \times 4}{0.25}\right)^2 = 983.4496$$

Therefore, the required sample size is 984

Inference for One Population Mean

Statistical Inferences

Point/Interva Estimation

Confidence Intervals When σ Unknown

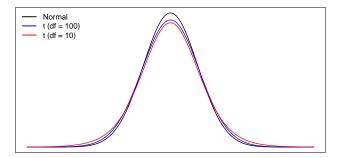
- In practice, it is unlikely that σ is available to us
- One reasonable option is to replace σ with s, the sample standard deviation
- We need to account for this added uncertainty with a (slightly) different sampling distribution that has fatter tails

⇒ Student's t Distribution (William Gosset, 1908)

Statistical Inferences

Point/Interva Estimation

Student's t Distribution



Inference for One Population Mean

Statistical Inferences

Point/Interval Estimation

- Recall the standardize sampling distribution $\frac{\bar{X}_n \mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0, 1)$
- Similarly , the studentized sampling distribution $\frac{\bar{X}_n \mu}{\frac{s}{\sqrt{n}}} \sim t_{df=n-1}$

Confidence Intervals (CIs) for μ When σ is Unknown

• $(1 - \alpha) \times 100\%$ Cl for μ :

$$\left[\bar{X}_n - t_{\frac{\alpha}{2}, n-1} \frac{s_n}{\sqrt{n}}, \bar{X}_n + t_{\frac{\alpha}{2}, n-1} \frac{s_n}{\sqrt{n}}\right],$$

where $t_{\frac{\alpha}{2},n-1}$ is the $1 - \frac{\alpha}{2}$ percentile of a student t distribution with the degrees of freedom = n - 1

• $\frac{s_n}{\sqrt{n}}$ is an estimate of the standard error of \bar{X}_n

Statistical Inferences

Point/Interval Estimation

Average Height Example Revisited

Inference for One Population Mean

Statistical Inferences

Point/Interva Estimation

Confidence Intervals

We measure the heights of 40 randomly chosen men, and get a mean height of 5'9" (\approx 175cm), and a standard deviation of 4.5" (\approx 11.4cm). Find the 95% confidence interval of the true mean height of ALL men.

O Point estimate:
$$\bar{X}_{40} = \frac{\sum_{i=1}^{40} X_i}{40} = 69$$
 inches

Statistical Inferences

Point/Interva Estimation

O Point estimate:
$$\bar{X}_{40} = \frac{\sum_{i=1}^{40} X_i}{40} = 69$$
 inches

Sample standard deviation: s = 4.5 inches

Statistical Inferences

Point/Interva Estimation

O Point estimate:
$$\bar{X}_{40} = \frac{\sum_{i=1}^{40} X_i}{40} = 69$$
 inches

- Sample standard deviation: s = 4.5 inches
- (Estimated) standard error of $\bar{X}_{n=40} = \frac{s_n}{\sqrt{n}} = \frac{4.5}{\sqrt{40}} = 0.71$ inches

Statistical Inferences

Point/Interva Estimation

O Point estimate:
$$\bar{X}_{40} = \frac{\sum_{i=1}^{40} X_i}{40} = 69$$
 inches

- **2** Sample standard deviation: s = 4.5 inches
- (Estimated) standard error of $\bar{X}_{n=40} = \frac{s_n}{\sqrt{n}} = \frac{4.5}{\sqrt{40}} = 0.71$ inches
- **95%CI:** Need to find $t_{0.05/2,39} = 2.02$ from a t-table (or using a statistical software)

Statistical Inferences

Point/Interva Estimation

O Point estimate:
$$\bar{X}_{40} = \frac{\sum_{i=1}^{40} X_i}{40} = 69$$
 inches

- **2** Sample standard deviation: s = 4.5 inches
- (Estimated) standard error of $\bar{X}_{n=40} = \frac{s_n}{\sqrt{n}} = \frac{4.5}{\sqrt{40}} = 0.71$ inches
- **95%CI:** Need to find $t_{0.05/2,39} = 2.02$ from a t-table (or using a statistical software)
- **)** 95% CI for μ_X is:

$$\begin{bmatrix} 69 - 2.02 \times 0.71, 69 + 2.02 \times 0.71 \end{bmatrix}$$

= $\begin{bmatrix} 67.57, 70.43 \end{bmatrix}$

Statistical Inferences

Point/Interva Estimation

In this lecture, we learned

Statistical Inferences

• Point and interval estimation

Confidence Intervals

Inference for One Population Mean

Statistical Inferences

Point/Interva Estimation