Lecture 14 Inference on Two Population Means Readings: IntroStat Chapter 6; OpenIntro Chapter 7.2, 7.3

STAT 8010 Statistical Methods I June 5, 2023 Inference on Two Population Means

Iwo-Sample t Confidence ntervals/Tests

Paired t-Test

Whitney Huang Clemson University

Agenda

Inference on Two Population Means

Iwo-Sample t Confidence ntervals/Tests

Paired t-Test

Two-Sample t Confidence Intervals/Tests

Comparing Two Population Means

- We often interested in comparing two groups (e.g.)
 - Does a particular pesticide increase the yield of corn per acre?
 - Do men and women in the same occupation have different salaries?
- The common ingredient in these questions: They can be answered by conducting statistical inferences of two populations using two (independent) samples, one from each of two populations

Two-Sample t Confidence Intervals/Tests

Notation

Parameters:

- Population means: μ_1, μ_2
- Population standard deviations: *σ*1, *σ*2
- Statistics:
 - Sample means: \bar{X}_1, \bar{X}_2
 - Sample standard deviations: *s*₁, *s*₂
 - Sample sizes: n_1, n_2

Two-Sample t Confidence Intervals/Tests

Statistical Inference for $\mu_1 - \mu_2$

- Point estimate: $\bar{X}_1 \bar{X}_2$
- Interval estimate: Need to figure out $\sigma_{\bar{X}_1-\bar{X}_2}$, the standard error of $\bar{X}_1 \bar{X}_2$
- Hypothesis Testing:
 - Upper-tailed test: $H_0: \mu_1 \mu_2 = 0$ vs. $H_a: \mu_1 \mu_2 > 0$
 - Lower-tailed test: $H_0: \mu_1 \mu_2 = 0$ vs. $H_a: \mu_1 \mu_2 < 0$
 - Two-tailed test: $H_0: \mu_1 \mu_2 = 0$ vs. $H_a: \mu_1 \mu_2 \neq 0$

Two-Sample t Confidence Intervals/Tests

Confidence Intervals for $\mu_1 - \mu_2$

If we are willing to **assume** $\sigma_1 = \sigma_2$, then we can "pool" these two (independent) samples together to estimate the common σ using s_p :

$$s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$$

We can then derive the (estimated) standard error of $\bar{X}_1 - \bar{X}_2$, which takes the following form

$$\sqrt{\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}} = s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

With CLT (assuming sample sizes are sufficiently large), we obtain the $(1 - \alpha) \times 100\%$ Cl for $\mu_1 - \mu_2$:

$$\underbrace{\bar{X}_1 - \bar{X}_2}_{\text{point estimate}} \pm t_{\alpha/2, n_1 + n_2 - 2} s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}_{\text{margin of error}}$$

Inference on Two Population Means

Two-Sample t Confidence Intervals/Tests

Confidence Intervals for $\mu_1 - \mu_2$: What if $\sigma_1 \neq \sigma_2$?

• We will use s_1^2, s_2^2 as the estimates for σ_1^2 and σ_2^2 to obtain the standard error:

• The formula for the degrees of freedom is somewhat complicated:

$$\frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{(s_1^2/n_1)^2}{n_1 - 1} + \frac{(s_2^2/n_2)^2}{n_2 - 1}}$$

• We can then construct the $(1 - \alpha) \times 100\%$ Cl for $\mu_1 - \mu_2$:

$$\underbrace{\bar{X}_1 - \bar{X}_2}_{\text{point estimate}} \pm t_{\alpha/2}, \text{ df calculated from above } \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}_{\text{margin of error}}$$

iwo-Sampie t Confidence Intervals/Tests

To Pool ($\sigma_1 = \sigma_2$) or Not to Pool ($\sigma_1 \neq \sigma_2$)?

We could perform the following test:

•
$$H_0: \sigma_1^2/\sigma_2^2 = 1$$
 vs. $\sigma_1^2/\sigma_2^2 \neq 1$

- Test statistic: $F^* = s_1^2/s_2^2$. Under H_0 , $F^* \sim F_{n_1-1,n_2-1}$
- For a given α, we reject H₀ if the P-value < α (or F_{obs} > F_{α,n1-1,n2-1})
- If we fail to reject H_0 , then we will use s_p as an estimate for σ and we have $s_{\bar{X}_1-\bar{X}_2} = s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$. Otherwise, we use $s_{\bar{X}_1-\bar{X}_2} = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$

Two-Sample t Confidence Intervals/Tests

Example

Inference on Two Population Means

Two-Sample t Confidence ntervals/Tests

Paired t-Test

An experiment was conducted to evaluate the effectiveness of a treatment for tapeworm in the stomachs of sheep. A random sample of 24 worm-infected lambs of approximately the same age and health was randomly divided into two groups. Twelve of the lambs were injected with the drug (treatment group) and the remaining twelve were left untreated (control group). After a 6-month period, the worm counts were recorded:

Treatment	18	43	28	50	16	32	13	35	38	33	6	7
Control	40	54	26	63	21	37	39	23	48	58	28	39

Plot the Two Samples

60 50 40 30 20 10 treatment control

 The untreated lambs (control group) appear to have higher average worm counts than the treated lambs (treatment group). But do we have enough evidence ?

Two-Sample t Confidence Intervals/Tests

Example Cont'd

```
> apply(dat, 2, mean)
treatment control
26.58333 39.66667
> apply(dat, 2, sd)
treatment control
14.36193 13.85859
> var.test(treatment, control)
```

F test to compare two variances

We fail to reject $\sigma_1 = \sigma_2 = \sigma$. Therefore we will use s_p , the pooled standard deviation, as an estimate for σ

Two-Sample t Confidence Intervals/Tests

Example Cont'd

Inference on Two Population Means

Two-Sample t Confidence Intervals/Tests

Paired t-Test

 Place a 95% confidence interval on µ₁ – µ₂ to assess the size of the difference in the two population means

• Test whether the mean number of tapeworms in the stomachs of the treated lambs is less than the mean for untreated lambs. Use an $\alpha = 0.05$ test

Another Example

Inference on Two Population Means

Two-Sample t Confidence Intervals/Tests

Paired t-Test

A simple random sample with sample size 37 is taken and are subjected to a treatment ($\bar{X}_1 = 19.45, s_1 = 4.3$). A simple random sample with sample size 31 is taken and given a placebo ($\bar{X}_2 = 18.2, s_2 = 2.2$). At the 10% level can we say that the means are different between the two groups?

Inference on Two Population Means

Two-Sample t Confidence Intervals/Tests

Paired t-Test

Insurance handlers are concerned about the high estimates they are receiving for auto repairs from garage I compared to garage II. To verify their suspicions, each of 15 cars recently involved in an accident was taken to both garages for separate estimates of repair costs. The estimates from the two garages are given in the following table

Garage I	Garage II	Garage I	Garage II	Garage I	Garage II
17.6	17.3	20.2	19.1	19.5	18.4
11.3	11.5	13.0	12.7	16.3	15.8
15.3	14.9	16.2	15.3	12.2	12.0
14.8	14.2	21.3	21.0	22.1	21.0
16.9	16.1	17.6	16.7	18.4	17.5

Example Cont'd

Suppose we perform a two-sample test

Sample statistics: $\bar{X}_1 = 16.85, \bar{X}_2 = 16.23, s_1 = 3.20, s_2 = 2.94$

•
$$H_0: \mu_1 - \mu_2 = 0$$
 vs. $H_a: \mu_1 - \mu_2 > 0$

•
$$t_{obs} = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} = \frac{16.85 - 16.23}{\sqrt{\frac{3.2^2}{15} + \frac{2.94^2}{15}}} = \frac{0.62}{1.12} = 0.55$$

• Critical value for rejection region: $t_{0.05,df=27} = 1.70$

• Since t_{obs} is not in the rejection region. We fail to reject H_0 at 0.05 level.

Two-Sample t Confidence

Boxplots and R Output

Welch Two Sample t-test data: GarageI and GarageII t = 0.54616, df = 27.797, p-value = 0.2947 alternative hypothesis: true difference in means is greater than 0 95 percent confidence interval: -1.29749 Inf sample estimates: mean of x mean of y 16.84667 16.23333 Inference on Two Population Means

Two-Sample t Confidence Intervals/Tests

Wait a Minute

For all but one of the 15 cars, the estimates from garage I were higher than that from garage II.

Two-Sample t Confidence Intervals/Tests

Analyzing Matched Pairs

- Matched pairs are dependent samples where each unit in the first sample is directly linked with a unit in the second sample
- This could occur in several situations, for example, before/after study, study on twins, pairing subjects based on similar characteristics
- We need different strategy for testing two dependent samples ⇒ Paired t-Tests

Inference on Two Population Means

Two-Sample t Confidence Intervals/Tests

Paired t-Tests

Inference on Two Population Means

Two-Sample t Confidence Intervals/Tests

Paired t-Test

• $H_0: \mu_d = 0$ vs. $H_a: \mu_d > 0$ (Upper-tailed); $\mu_d < 0$ (Lower-tailed); $\mu_d \neq 0$ (Two-tailed)

• Test statistic:
$$t^* = \frac{\overline{X}_d - 0}{\frac{s_d}{\sqrt{n}}}$$
. If $\mu_d = 0$, then $t^* \sim t_{df=n-1}$

Use rejection region method or P-value method to make a decision

Car Repair Example Revisited

Inference on Two Population Means

Two-Sample t Confidence Intervals/Tests

Paired t-Test

Garage I - Garage II	Garage I - Garage II	Garage I - Garage I
17.6 - 17.3 = 0.3	20.2 - 19.1 = 1.1	19.5 - 18.4 = 1.1
11.3 - 11.5 = - <mark>0.2</mark>	13.0 - 12.7 = 0.3	16.3 - 15.8 = 0.5
15.3 - 14.9 = 0.4	16.2 - 15.3 = 0.9	12.2 - 12.0 = 0.2
14.8 - 14.2 = 0.6	21.3 - 21.0 = 0.3	22.1 - 21.0 = 1.1
16.9 - 16.1 = 0.8	17.6 - 16.7 = 0.9	18.4 - 17.5 = 0.9

First, compute the difference in paired samples

Compute the sample mean and standard deviation for the differences

Car Repair Example Cont'd

 $\bar{X}_d = 0.61, s_d = 0.39$

)
$$H_0: \mu_d = 0$$
 vs. $H_a: \mu_d > 0$

2
$$t_{obs} = \frac{0.61}{\frac{0.39}{\sqrt{15}}} = 6.03$$

Oritical value for rejection region: $t_{0.05,df=14} = 1.76 \Rightarrow$ reject H_0

We do have enough evidence that the true mean repair cost difference for the garage I and II is greater than 0

Two-Sample t Confidence Intervals/Tests

Boxplot and R Output

Garage I - Garage II

Paired t-test

data: GarageI and GarageII
t = 6.0234, df = 14, p-value = 1.563e-05
alternative hypothesis: true difference in means
is greater than 0
95 percent confidence interval:
 0.4339886 Inf
sample estimates:
 mean of the differences
 0.6133333

Inference on Two Population Means

Two-Sample t Confidence Intervals/Tests

Summary

In this lecture, we learned

• Two sample t confidence interval

- Two sample t test
- Paired t-Test

Inference on Two Population Means

Two-Sample t Confidence Intervals/Tests