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Testing for a Difference in More Than Two Means

In the last lecture we have seen how to test a difference in
two means, using two sample t-test

Question: what if we want to test if there are differences
in a set of more than two means?

The statistical tool for doing this is called analysis of
variance (ANOVA)
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A Quick Quiz: To Detect Differences in Means

Question: Are group 1, 2, 3 for each case come from
the same population?
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Another Quiz: To Detect Differences in Means

Question: Are group 1, 2, 3 for each case come from
the same population?
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Decomposing Variance to Test for a Difference in Means

In the first quiz, the data within each group is not very
spread out for Case 1, while in Case 2 it is
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In the second quiz, the group means are quite different for
Case 1, while they are not in Case 2
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In ANOVA, we compare between group variance (“signal”)
to within group variance (“noise”) to detect a difference in
means
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Model and Notation

Xij = µj + εij, εij
i.i.d.
∼ N(0, σ2

), i = 1,⋯,nj,1 ≤ j ≤ J

J: number of groups

µj, j = 1,⋯, J: population mean for jth group

X̄j, j = 1,⋯, J: sample mean for jth group

s2
j , j = 1,⋯, J: sample variance for jth group

N = ∑J
j=1 nj: overall sample size

X̄ = ∑
J
j=1∑

nj
i=1 Xij

N : overall sample mean
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Partition of Sums of Squares

“Sums of squares” refers to sums of squared deviations from
some mean. ANOVA decomposes the total sum of squares
into treatment sum of squares and error sum of squares:

Total sum of square: SSTo = ∑J
j=1∑

nj

i=1(Xij − X̄)2

Treatment sum of square: SSTr = ∑J
j=1 nj(X̄j − X̄)2

Error sum of square: SSE = ∑J
j=1(nj − 1)s2

j

We can show that SSTo = SSTr + SSE



Analysis of Variance
(ANOVA)

15.8

Mean squares

A mean square is a sum of squares divided by its associated
degrees of freedom

Mean square of treatments: MSTr = SSTr
J−1

Mean square of error: MSE = SSE
N−J

Think of MSTr as the “signal”, and MSE as the “noise” when
detecting a difference in means (µ1,⋯, µJ). A nature test
statistic is the signal-to-noise ratio i.e.,

F∗ =
MSTr
MSE



Analysis of Variance
(ANOVA)

15.9

ANOVA Table and F Test

Source df SS MS F statistic

Treatment J − 1 SSTr MSTr = SSTr
J−1 F = MSTr

MSE

Error N − J SSE MSE = SSE
N−J

Total N − 1 SSTo

F-Test
H0 ∶ µ1 = µ2 = ⋯ = µJ

Ha ∶ At least one mean is different

Test Statistic: F∗ = MSTr
MSE . Under H0, F∗ ∼ Fdf1=J−1,df2=N−J

Assumptions:

The distribution of each group is normal with equal variance
(i.e. σ2

1 = σ2
2 = ⋯ = σ2

J )
Responses for a given group are independent to each other
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F Distribution and the Overall F-Test

Consider the observed F test statistic: Fobs =
MSTr
MSE

Should be “near” 1 if the means are equal
Should be “larger than” 1 if means are not equal

⇒We use the null distribution of F∗ ∼ Fdf1=J−1,df2=N−J to quantify
if Fobs is large enough to reject H0
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Example

A researcher who studies sleep is interested in the ef-
fects of ethanol on sleep time. She gets a sample of
20 rats and gives each an injection having a particular
concentration of ethanol per body weight. There are 4
treatment groups, with 5 rats per treatment. She records
Rapid eye movement (REM) sleep time for each rat over
a 24-period. The results are plotted below:

60 70 80 90

Control

1g/kg

2g/kg

4g/kg



Analysis of Variance
(ANOVA)

15.12

Set Up Hypotheses and Compute Sums of Squares

H0 ∶ µ1 = µ2 = µ3 = µ4 vs.
Ha ∶ At least one mean is different

Sample statistics:
Treatment Control 1g/kg 2g/kg 4g/kg

Mean 82.2 81.0 73.8 65.7
Std 9.6 5.3 9.4 7.9

Overall Mean X̄ = ∑
4
j=1∑5

i=1 Xij

20 = 75.67

SSTo = ∑4
j=1∑

5
i=1(Xij − X̄)2 = 1940.69

SSTr = ∑4
j=1 5 × (X̄j − X̄)2 = 861.13

SSE = ∑4
j=1(5 − 1) × s2

j = 1079.56
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ANOVA Table and F-Test

Source df SS MS F statistic

Treatment 4 − 1 = 3 861.13 861.13
3 = 287.04 287.04

67.47 = 4.25

Error 20 − 4 = 16 1079.56 1079.56
16 = 67.47

Total 19 1940.69

Suppose we use α = 0.05
Rejection Region Method:
Fobs = 4.25 > F0.95,df1=3,df2=16 = 3.24
P-value Method: P(F∗ > Fobs) = P(F∗ > 4.25) = 0.022 < 0.05

Reject H0 ⇒We do have enough evidence that not all of
population means are equal at 5% level.
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R Output
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One-Way ANOVA & Overall F-Test

We use one-way ANOVA to compare means of J (≥ 3)
groups/conditions

H0 ∶ µ1 = µ2 = ⋯ = µJ

Ha ∶ at least a pair µ’s differ

If H0 is rejected, ANOVA just states that there is a
significant difference between the groups but not where
those differences occur

We need to perform additional post hoc tests, multiple
comparisons, to determine where the group differences
are
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Pairwise t-Tests

Suppose we have 4 groups, i.e. J = 4, then we need to
perform (42) = 6 two-sample tests to locate where the group
differences are

H0 ∶ µ1 = µ2 vs. Ha ∶ µ1 ≠ µ2

H0 ∶ µ1 = µ3 vs. Ha ∶ µ1 ≠ µ3

H0 ∶ µ1 = µ4 vs. Ha ∶ µ1 ≠ µ4

H0 ∶ µ2 = µ3 vs. Ha ∶ µ2 ≠ µ3

H0 ∶ µ2 = µ4 vs. Ha ∶ µ2 ≠ µ4

H0 ∶ µ3 = µ4 vs. Ha ∶ µ3 ≠ µ4

What if we simply perform these tests using, say, α = 0.05
for each test?

P(making a least one type I error) = 1 − (1 − 0.05)6 = 0.265

if each test was independent
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Family-Wise Error Rate (FWER)

Family-Wise Error Rate (FWER) ᾱ: the probability of
making 1 or more type I errors in a set of hypothesis
tests

For m independent tests, each with individual type I error rate
α, then we have

ᾱ = 1 − (1 − α)m

α
m 0.1 0.05 0.01
1 0.100 0.050 0.010
3 0.271 0.143 0.030
6 0.469 0.265 0.059
10 0.651 0.401 0.096
15 0.794 0.537 0.140
21 0.891 0.659 0.190
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The Bonferroni Correction

If we would like to control the FWER to be α, then we adjust
the significant level for each of the m tests to be α

m

FWER = P(∪m
i=1pi ≤

α

m
) ≤

m

∑
i=1

P(pi ≤
α

m
) = m

α

m
= α

where pi is the p-value for the ith test

If we have 4 treatment groups, then we need to perform 6 tests
(m = 6)⇒ will need to set the significant level for each
individual pairwise t-test to be 0.05/6 = 0.0083 to ensure that
FWER is less than 0.05

Remark: Bonferroni procedure can be very conserva-
tive but gives guaranteed control over FWER at the risk
of reducing statistical power. Does not assume indepen-
dence of the comparisons.
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Example

A researcher who studies sleep is interested in the ef-
fects of ethanol on sleep time. She gets a sample of
20 rats and gives each an injection having a particular
concentration of ethanol per body weight. There are 4
treatment groups, with 5 rats per treatment. She records
Rapid eye movement (REM) sleep time for each rat over
a 24-period.

Treatment Control 1g/kg 2g/kg 4g/kg
Mean 82.2 81.0 73.8 65.7
Std 9.6 5.3 9.4 7.9

Recall in last lecture we reject H0 ∶ µ1 = µ2 = µ3 = µ4 at 0.05
level. But where these differences are?
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Example: Multiple Testing with Bonferroni Correction

60 70 80 90

Control

1g/kg

2g/kg

4g/kg

P-value

Test µ1, µ2 µ1, µ3 µ1, µ4 µ2, µ3 µ2, µ4 µ3, µ4

Pooled 0.816 0.202 0.018 0.175 0.007 0.179
Non-pooled 0.818 0.202 0.019 0.185 0.009 0.180
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Fisher’s Protected Least Significant Difference (LSD)
Procedure

We conclude that µi and µj differ at α significance level if
∣X̄i − X̄j∣ > LSD, where

LSD = tα/2,df=N−J

¿
Á
ÁÀMSE(

1
ni
+

1
nj
)

This procedure builds on the equal variances t-test of the
difference between two means

The test statistic is improved by using MSE rather than s2
p
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Tukey’s Honest Significance Difference (HSD) Test

The test procedure:

Requires equal sample size n per populations

Find a critical value ω as follows:

ω = qα(J,N − J)
√

MSE
n

where qα(J,N − J) can be obtained from the studentized
range table

If X̄max − X̄min > ω⇒ there is sufficient evidence to conclude
that µmax > µmin

Repeat this procedure for each pair of samples. Rank the
means if possible
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Summary

In this lecture, we learned

Sums of Squares Decomposition of ANOVA

ANOVA Table and F-Test

Multiple Testing


