

Readings: IntroStat Chapter 9; OpenIntro Chapter 7.5

STAT 8010 Statistical Methods I June 7, 2023

> Whitney Huang Clemson University

Facebook Friends Example

Too Much of a Good Thing? The Relationship Between Number of Friends and Interpersonal Impressions on Facebook

Stephanie Tom Tong Brandon Van Der Heide Lindsey Langwell

Department of Communication

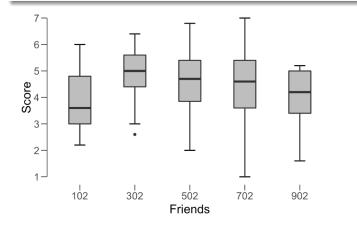
Joseph B. Walther

Departments of Communication and Telecommunication, Information Studies & Media Michigan State University

A central feature of the online social networking system, Facebook, is the connection to and links among friends. The sum of the number of one's friends is a feature displayed on users' profiles as a vestige of the friend connections a user has accrued. In contrast to offline social networks, individuals in online network systems frequently accrue friends numbering several hundred. The uncertain meaning of friend status in these systems raises questions about whether and how sociometric popularity conveys attractiveness in non-traditional, non-linear ways. An experiment examined the relationship between the number of friends a Facebook profile featured and observers' ratings of attractiveness and extraversion. A curvilinear effect of sociometric popularity and social attractiveness emerged, as did a quartic relationship between friend count and perceived extraversion. These results suggest that an overabundance of friend connections raises doubts about Facebook users' popularity and desirability.

Facebook Friends Example Cont'd

A researcher would like to investigate the relationship between Facebook social attractiveness and the number of Facebook friends. An experiment was conducted where five groups of participant judge the same Facebook profiles, except for the one aspect that was manipulated: the number of friends for that profile.



Facebook Example: Descriptive Statistics

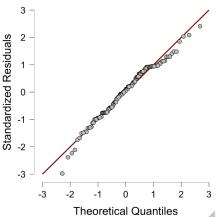
	Score					
	102	302	502	702	902	
Valid	24	33	26	30	21	
Missing	0	0	0	0	0	
Mean	3.817	4.879	4.562	4.407	3.990	
Std. Deviation	0.999	0.851	1.070	1.428	1.023	
Minimum	2.200	2.600	2.000	1.000	1.600	
Maximum	6.000	6.400	6.800	7.000	5.200	

Example: Checking Model Assumptions

Assumption Checks **v**

Test for Equality of Variances (Levene's)

F	df1	df2	р
2.607	4.000	129.000	0.039



Facebook Friends: Overall F-Test

Question: Are Facebook attractiveness affected by # of friends?

 $H_0: \mu_1 = \mu_2 = \dots = \mu_5$ $H_a:$ At least one group mean is different from others

Facebook Friends: Overall F-Test

Question: Are Facebook attractiveness affected by # of friends?

```
H_0: \mu_1 = \mu_2 = \dots = \mu_5
H_a: At least one group mean is different from others
```

```
Analysis of Variance Table

Response: Score

Df Sum Sq Mean Sq F value

Friends 4 19.89 4.9726 4.142

Residuals 129 154.87 1.2005

Pr(>F)

Friends 0.00344 **

Residuals
```


Facebook Friends: Overall F-Test

Question: Are Facebook attractiveness affected by # of friends?

```
H_0: \mu_1 = \mu_2 = \dots = \mu_5
H_a: At least one group mean is different from others
```

Analysis of Variance Table Response: Score Df Sum Sq Mean Sq F value Friends 4 19.89 4.9726 4.142 Residuals 129 154.87 1.2005 Pr(>F) Friends 0.00344 ** Residuals

Next, we need to figure out where these differences occur

Facebook Example: Fisher's LSD

Multiple Comparisons and Linear Contrasts

We conclude that μ_i and μ_j differ at α level if $|\bar{X}_i - \bar{X}_j| > LSD$, where

$$LSD = t_{\alpha/2, df=N-J} \sqrt{\mathsf{MSE}\left(\frac{1}{n_i} + \frac{1}{n_j}\right)}$$

Facebook Example: Fisher's LSD

We conclude that μ_i and μ_j differ at α level if $|\bar{X}_i - \bar{X}_j| > LSD$, where

$$LSD = t_{\alpha/2, df=N-J} \sqrt{\mathsf{MSE}\left(\frac{1}{n_i} + \frac{1}{n_j}\right)}$$

> LSD_none\$groups

Score groups

- 302 4.878788 a
- 502 4.561538 ab
- 702 4.406667 abc
- 902 3.990476 bc
- 102 3.816667 c

Facebook Example: Fisher's LSD

We conclude that μ_i and μ_j differ at α level if $|\bar{X}_i - \bar{X}_j| > LSD$, where

$$LSD = t_{\alpha/2, df=N-J} \sqrt{\mathsf{MSE}\left(\frac{1}{n_i} + \frac{1}{n_j}\right)}$$

> LSD_none\$gi	roups	> LSD_bon\$groups			
Score	groups	Score groups			
302 4.878788	а	302 4.878788 a			
502 4.561538	ab	502 4.561538 ab			
702 4.406667	abc	702 4.406667 ab			
902 3.990476	bc	902 3.990476 b			
102 3.816667	с	102 3.816667 b			

Me and the significant boys

Me and the significant boys after Bonferroni correction

Facebook Example: Tukey's HSD Test

Yet there is another method to deal with multiple testing: Tukey's Honest Significant Difference (HSD) test. We conclude that μ_i and μ_j differ at α familywise level if $|\bar{X}_i - \bar{X}_j| > \omega$, where

$$\omega = q_{\alpha}(J, N - J) \sqrt{\frac{\mathsf{MSE}}{n}}$$

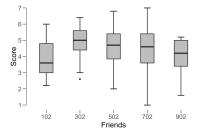
 $q_{\alpha}(J, N-J)$ can be obtained from the studentized range table

Denominator	Number of Groups (a.k.a. Treatments)							
DF	3	4	5	6	7	8	9	10
51	3.414	3.756	3.999	4.187	4.340	4.469	4.580	4.677
52	3.412	3.753	3.996	4.184	4.337	4.465	4.576	4.673
53	3.410	3.751	3.994	4.181	4.334	4.462	4.572	4.669
54	3.408	3.749	3.991	4.178	4.331	4.459	4.569	4.666
55	3.406	3.747	3.989	4.176	4.328	4.455	4.566	4.662
56	3.405	3.745	3.986	4.173	4.325	4.452	4.562	4.659
57	3.403	3.743	3.984	4.170	4.322	4.449	4.559	4.656
58	3.402	3.741	3.982	4.168	4.319	4.447	4.556	4.652
59	3.400	3.739	3.979	4.165	4.317	4.444	4.553	4.649
60	3.399	3.737	3.977	4.163	4.314	4.441	4.550	4.646

Critical Values of Studentized Range Distribution(q) for Familywise ALPHA = .05.

Facebook Example: Tukey's HSD Test

diff lwr upr p adj 302-102 1.0621212 0.2488644 1.87537798 0.003889635 502-102 0.7448718 -0.1132433 1.60298691 0.121456224 702-102 0.5900000 -0.2402014 1.42020143 0.288431585 902-102 0.1738095 -0.7320145 1.07963355 0.984016816 502-302 -0.3172494 -1.1121910 0.47769215 0.804080046 702-302 -0.4721212 -1.2368466 0.29260420 0.432633745 902-302 -0.8883117 -1.7345313 -0.04209203 0.034535577 702-502 -0.1548718 -0.9671402 0.65739661 0.984391504 902-502 -0.5710623 -1.4604793 0.31835479 0.391768065 902-702 -0.4161905 -1.2787075 0.44632652 0.669927748



Linear Contrasts

Suppose we have *J* populations (e.g. response for *J* different treatments) of interest. We have seen how to perform multiple comparisons. For example, the comparison between μ_1 and μ_2 can be conducted using the test: $H_0: \mu_1 - \mu_2 = 0$ vs. $H_a: \mu_1 - \mu_2 \neq 0$. This comparison is actually a special case of linear contrasts

Linear Contrasts

Let c_1, c_2, \dots, c_J are constants where $\sum_{j=1}^{J} c_j = 0$, then $\sum_{j=1}^{J} c_j \mu_j$ is called a **linear contrast** of the population means.

Example: Suppose J = 4

$$\mu_1 - \mu_3 : c_1 = 1, c_2 = 0, c_3 = -1, c_4 = 0$$

$$2 \mu_2 - \mu_4 : c_1 = 0, c_2 = 1, c_3 = 0, c_4 = -1$$

Inferences for Linear Contrasts

If we want to make a inference about $L = \sum_{i=1}^{J} c_{i} \mu_{j}$. Then we use

as the point estimate. Furthermore, we can construct a $100(1 - \alpha)$ % Cl for *L*:

$$(\hat{L} - t_{(\alpha/2, df=N-J)}\hat{s}\hat{e}_{\hat{L}}, \hat{L} + t_{(\alpha/2, df=N-J)}\hat{s}\hat{e}_{\hat{L}}),$$
where $\hat{s}\hat{e}_{\hat{L}} = \sqrt{\mathsf{MSE}\left(\frac{c_1^2}{n_1} + \dots + \frac{c_J^2}{n_J}\right)}$

To test whether L is significantly different from 0, we can conduct the following test:

$$H_0: \sum_{j=1}^J c_j \mu_j = 0$$
 vs. $H_a: \sum_{j=1}^J c_j \mu_j \neq 0$

Hypothesis Testing for Linear Contrasts

Null and Alternative Hypotheses:

$$H_0: \sum_{j=1}^J c_j \mu_j = 0$$
 vs. $H_a: \sum_{j=1}^J c_j \mu_j \neq 0$

Itest Statistic:

$$t_{obs} = \frac{\hat{L} - 0}{\hat{se}_{\hat{L}}} = \frac{\sum_{j=1}^{J} c_j \bar{X}_j}{\sqrt{\mathsf{MSE}\left(\frac{c_1^2}{n_1} + \dots + \frac{c_j^2}{n_j}\right)}}$$

Decision:

Reject H_0 if $|t_{obs}| > t_{\alpha/2, df=N-J}$ (or p-value < α)

Facebook Example: Linear Contrast

Suppose we'd like to compare μ_1 vs. $\frac{\mu_3 + \mu_4}{2}$. Let $L = 1\mu_1 - \frac{1}{2}\mu_3 - \frac{1}{2}\mu_4$. Then the above comparison is equivalent to test whether *L* is different from 0

$$I_0: L = 0 \text{ vs. } H_a: L \neq 0$$

2)
$$t_{obs} = \frac{\hat{L}}{\hat{se}_{L}} = \frac{1 \times 3.817 - 0.5 \times 4.562 - 0.5 \times 4.407}{\sqrt{1.2005 \times (\frac{12}{24} + \frac{0.5^2}{26} + \frac{0.5^2}{30})}} = \frac{-0.6674}{0.2675} = -2.495$$

Since |t_{obs}| = | - 2.495| = 2.495 > t_{0.025,df=129} = 1.9785. We reject H₀ at 0.05 level

Note: If we are performing several tests for different linear contrasts simultaneously, we'll need to adjust α level accordingly to control the FWER

In this lecture, we learned

- Multiple Comparisons
- Fisher's LSD & Tukey's HSD
- Inference for Linear Contrasts

