Lecture 2 Exploratory Data Analysis I Readings: IntroStat Chapters 2-3; OpenIntro Chapter 2

STAT 8010 Statistical Methods I May 17, 2023 Exploratory Data Analysis I

Summarizing Categorical Data

Summarizing Numerical Data

Whitney Huang Clemson University

Agenda

Exploratory Data Analysis I

Summarizing Categorical Data

Last Lecture

- Stating the problem, identifying the variable(s) of interest, and gathering data
 - Types of variables and datasets
 - Observational vs. Experimental Studies
 - Methods of sampling
- Summarizing the data
- Analyzing the data
- Reporting and interpreting the results

Summarizing Categorical Data

Today's Lecture

- Stating the problem, identifying the variable(s) of interest, and gathering data
 - Types of variables and datasets
 - Observational vs. Experimental Studies
 - Sampling Techniques
- Summarizing the data
- Analyzing the data
- Reporting and interpreting the results

Summarizing Categorical Data

xploratory Data Analysis I

Summarizing Categorical Data

Summarizing Numerical Data

Summarizing Categorical Variables

The paper *"Profile of sport/leisure injuries treated at emergency rooms of urban hospitals."* by Pelletier et al. 1991 examined the nature and number of sport/leisure injuries treated in hospital emergency rooms in a large metropolitan city. They classified non-contact sports injuries by sport, resulting in the following data set:

Summarizing Categorical Data

Summarizing Numerical Data

Sport
Soccer
Basketball
Others
Basketball
Touch Football
Others
Touch Football
Volleyball
Baseball/softball

Question: How to summarize this data set?

Frequency Table

Exploratory Data Analysis I

Summarizing Categorical Data

- A frequency table for categorical data is a table that displays the possible categories along with the associated frequencies or relative frequencies
- The frequency for a particular category is the number of times the category appears in the data set
- The relative frequency for a particular category is the fraction or proportion of the time that the category appears in the data set.

Frequencies and Relative Frequencies

running
11
leyball
17
running
5179775
leyball
9550562

Exploratory Data Analysis I

Summarizing Categorical Data

Frequencies and Relative Frequencies

> table(sport)							
sport			날 옷을 물로 가 물 것을 했다.				
Baseball/softball	Basketball	Bicycling	Jogging/running				
11	19	11	11				
Others	Soccer	Touch Football	Volleyball				
47	24	38	17				
<pre>> table(sport) / dim(sport)[1]</pre>							
sport			영상가 있는 것 같이 가 같아.				
Baseball/softball	Basketball	Bicycling	Jogging/running				
0.06179775	0.10674157	0.06179775	0.06179775				
Others	Soccer	Touch Football	Volleyball				
0.26404494	0.13483146	0.21348315	0.09550562				

How could we visualize these information? \Rightarrow Making a bar chart and/or a pie chart

Exploratory Data Analysis I

Summarizing Categorical Data

Bar Charts

A bar chart draws a bar with a height proportional to the count in the table:

Summarizing Categorical Data

Bar Charts cont'd

Summarizing Categorical Data

Pie Charts

Exploratory Data Analysis I

Summarizing Categorical Data

Pie Charts cont'd

Exploratory Data Analysis I

Summarizing Categorical Data

Bar Charts vs. Pie Charts

Exploratory Data Analysis I

Summarizing Categorical Data

Summarizing Numerical Data

Discussion: Which one you prefer to visualize categorical variables. Why?

A Good Bar Chart

Summarizing Categorical Data

A (Potential) Misleading Bar Chart

Same Data, Different Y-Axis

Exploratory Data Analysis I

Summarizing Categorical Data

Example: O'Hare Airport Flight Data

carrier	origin
UA	EWR
AA	LGA
AA	LGA
AA	LGA
UA	LGA
UA	EWR

Summarizing Categorical Data

Summarizing Numerical Data

In this example, we have two categorical variables, carrier and origin, respectively. How to summa-rize/visualize this dataset?

ORD Flight Data Cont'd

	EWR	LGA	EWR	LGA
AA	0	5694	AA 0.00	0.45
UA	3822	3162	UA 0.30	0.25

R S

I V E

Ν

Origin

Origin

xploratory Data Analysis I

Summarizing Categorical Data

Summarizing Numerical Data

Summarizing Numerical Variables

Example: Murder arrests (per 100,000) in US States in 1973

Data: 13.2, 10.0, 8.1, 8.8, 9.0, 7.9, 3.3, 5.9, 15.4, 17.4, 5.3, 2.6, 10.4, 7.2, 2.2, 6.0, 9.7, 15.4, 2.1, 11.3, 4.4, 12.1, 2.7, 16.1, 9.0, 6.0, 4.3, 12.2, 2.1, 7.4, 11.4, 11.1, 13.0, 0.8, 7.3, 6.6, 4.9, 6.3, 3.4, 14.4, 3.8, 13.2, 12.7, 3.2, 2.2, 8.5, 4.0, 5.7, 2.6, 6.8.

Question: How to graphically summarize this data set?

Summarizing Categorical Data

Stem-and-Leaf Plot

The decimal point is at the |

Exploratory Data Analysis I

Summarizing Categorical Data

Histogram

Murder Rate (per 100,000)

Exploratory Data

Analysis I

Histogram

Histogram of US Murder Rate in 1973

Murder Rate (per 100,000)

2.22

Exploratory Data

Analysis I

R S

Numerical Data

Ν

Murder Rate (per 100,000)

Exploratory Data Analysis I

Summarizing Categorical Data

Shape of Distributions

Negative Skew Positive Skew Source: Skewness - Wikipedia In the rest of the class, we will talk about how to sum-

Summarizing Categorical Data

Summarizing Numerical Data

marize a numerical variable in terms of its center and spread

- A measure of center attempts to report a "typical" value for the variable
- When a measure of center is calculated with **sample data** it is a **statistic**
- When a measure of center is calculated with popular (e.g., census data) it is a parameter
- Measures: Mean, Median, Mode

Summarizing Categorical Data

Mean

 The population mean, denoted by μ_X, is the sum of all the population values ({X_i,...,X_N}) divided by the size of the population (N). That is,

$$u_X = \frac{\sum_{i=1}^N X_i}{N}$$

The sample mean, denoted by X̄ is the sum of all the sample values ({X₁,...,X_n}) divided by the sample size (n). That is,

$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

Summarizing Categorical Data

Median

The median is the value separating the higher half from the lower half of a data sample

How to compute the median: Order the *n* observations in a data set from smallest to largest, then

 $Median = \begin{cases} the single middle value, & n odd \\ the average of the middle two values, & n even \end{cases}$

Summarizing Categorical Data

Mode

Exploratory Data Analysis I

Summarizing Categorical Data

Summarizing Numerical Data

The mode is the value of the observation that appears most frequently

How to compute the mode(s): Order the observations in a data set from smallest to largest, then find the number that is repeated more often than any other

Example

Exploratory Data Analysis I

Summarizing Categorical Data

Summarizing Numerical Data

Suppose we have the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13

 Plot this "data set" and describe the shape of the distribution

Summarizing Categorical Data

Summarizing Numerical Data

Suppose we have the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13

• Find the sample mean

$$\bar{X} = \sum_{i=1}^{9} \frac{13 + 18 + 13 + 14 + 13 + 16 + 14 + 21 + 13}{9} = 15$$

• Find the sample median

Summarizing Categorical Data

Summarizing Numerical Data

Suppose we have the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13

• Find the sample mean

$$\bar{X} = \sum_{i=1}^{9} \frac{13 + 18 + 13 + 14 + 13 + 16 + 14 + 21 + 13}{9} = 15$$

• Find the sample median

Summarizing Categorical Data

Summarizing Numerical Data

Suppose we have the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13

• Find the sample mean

$$\bar{X} = \sum_{i=1}^{9} \frac{13 + 18 + 13 + 14 + 13 + 16 + 14 + 21 + 13}{9} = 15$$

• Find the sample median

Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 21

Compute the sample size n and identify (or compute) the median value

Summarizing Categorical Data

Summarizing Numerical Data

Suppose we have the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13

• Find the sample mean

$$\bar{X} = \sum_{i=1}^{9} \frac{13 + 18 + 13 + 14 + 13 + 16 + 14 + 21 + 13}{9} = 15$$

• Find the sample median

Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 21

Compute the sample size n and identify (or compute) the median value

Summarizing Categorical Data

Summarizing Numerical Data

Suppose we have the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13

• Find the sample mean

$$\bar{X} = \sum_{i=1}^{9} \frac{13 + 18 + 13 + 14 + 13 + 16 + 14 + 21 + 13}{9} = 15$$

• Find the sample median

- Compute the sample size n and identify (or compute) the median value
- $0 n = 9 \Rightarrow$ the median is the 5th number, which is 14

Exploratory Data Analysis I

Summarizing Categorical Data

Summarizing Numerical Data

Find the mode

Exploratory Data Analysis I

Summarizing Categorical Data

Summarizing Numerical Data

Find the mode

Exploratory Data Analysis I

Summarizing Categorical Data

Summarizing Numerical Data

Find the mode

Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 21

2 We have 4 13 and 2 14 \Rightarrow 13 is the mode

Analysis I

Summarizing Categorical Data

Summarizing Numerical Data

Suppose we have the following list of values: 13, 18, 13, 14, 13, 16, 14, 210, 13

• Find the sample mean

$$\bar{X} = \sum_{i=1}^{9} \frac{13 + 18 + 13 + 14 + 13 + 16 + 14 + 210 + 13}{9} = 36$$

• Find the sample median

Analysis I

Summarizing Categorical Data

Summarizing Numerical Data

Suppose we have the following list of values: 13, 18, 13, 14, 13, 16, 14, 210, 13

• Find the sample mean

$$\bar{X} = \sum_{i=1}^{9} \frac{13 + 18 + 13 + 14 + 13 + 16 + 14 + 210 + 13}{9} = 36$$

• Find the sample median

Summarizing Categorical Data

Analysis I

Summarizing Numerical Data

Suppose we have the following list of values: 13, 18, 13, 14, 13, 16, 14, 210, 13

• Find the sample mean

$$\bar{X} = \sum_{i=1}^{9} \frac{13 + 18 + 13 + 14 + 13 + 16 + 14 + 210 + 13}{9} = 36$$

• Find the sample median

Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 210

Compute the sample size n and identify (or compute) the median value

Summarizing Categorical Data

Analysis I

Summarizing Numerical Data

Suppose we have the following list of values: 13, 18, 13, 14, 13, 16, 14, 210, 13

• Find the sample mean

$$\bar{X} = \sum_{i=1}^{9} \frac{13 + 18 + 13 + 14 + 13 + 16 + 14 + 210 + 13}{9} = 36$$

• Find the sample median

Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 210

Compute the sample size n and identify (or compute) the median value

Suppose we have the following list of values: 13, 18, 13, 14, 13, 16, 14, 210, 13

Find the sample mean

$$\bar{X} = \sum_{i=1}^{9} \frac{13 + 18 + 13 + 14 + 13 + 16 + 14 + 210 + 13}{9} = 36$$

Find the sample median

Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 210

Compute the sample size n and identify (or compute) the median value

 $0 n = 9 \Rightarrow$ the median is the 5th number, which is (still) 14

Summarizing Categorical Data

Find the mode

Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 210

Summarizing Categorical Data

Find the mode

Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 210

Summarizing Categorical Data

• Find the mode

Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 210

2 We have 4 13 and 2 $14 \Rightarrow 13$ is (still) the mode

Summarizing Categorical Data

• Find the mode

Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 210

2 We have 4 13 and 2 $14 \Rightarrow 13$ is (still) the mode

Summarizing Categorical Data

Find the mode

Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 210

2 We have 4 13 and 2 14 \Rightarrow 13 is (still) the mode

What is the take-home message?

Summarizing Categorical Data

Summary

In this lecture, we learned

- Summarizing Categorical Data
- Summarizing the Central Tendency of Numerical Data

In next lecture we will learn

- How to summarize the spread of numerical data
- How to construct a boxplot
- How to visualize numerical + categorical variables and numerical + numerical variables

Summarizing Categorical Data