Lecture 2
 Exploratory Data Analysis I

Readings: IntroStat Chapters 2-3; OpenIntro Chapter 2
STAT 8010 Statistical Methods I May 17, 2023

Whitney Huang Clemson University

Agenda

(1) Summarizing Categorical Data

2 Summarizing Numerical Data

- Stating the problem, identifying the variable(s) of interest, and gathering data
- Types of variables and datasets
- Observational vs. Experimental Studies
- Methods of sampling
- Summarizing the data
- Analyzing the data
- Reporting and interpreting the results

Today's Lecture

- Stating the problem, identifying the variable(s) of interest, and gathering data
- Types of variables and datasets
- Observational vs. Experimental Studies
- Sampling Techniques
- Summarizing the data
- Analyzing the data
- Reporting and interpreting the results

Summarizing Categorical Variables

Example: Sport Injuries

The paper "Profile of sport/leisure injuries treated at emergency rooms of urban hospitals." by Pelletier et al. 1991 examined the nature and number of sport/leisure injuries treated in hospital emergency rooms in a large metropolitan city. They classified non-contact sports injuries by sport, resulting in the following data set:

Sport
Soccer
Basketball
Others
Basketball
Touch Football
Others
Touch Football
Volleyball
Baseball/softball
\vdots

Question: How to summarize this data set?

- A frequency table for categorical data is a table that displays the possible categories along with the associated frequencies or relative frequencies
- The frequency for a particular category is the number of times the category appears in the data set
- The relative frequency for a particular category is the fraction or proportion of the time that the category appears in the data set.

Frequencies and Relative Frequencies

> table(sport) sport			
Baseball/softball	Basketball	Bicycling	Jogging/running
11	19	11	11
Others	Soccer	Touch Football	Volleyball
47	24	38	17
> table(sport) / dim(sport)[1] sport			
Baseball/softball	Basketball	Bicycling	Jogging/running
0.06179775	0.10674157	0.06179775	0.06179775
Others	Soccer	Touch Football	Volleyball
0.26404494	0.13483146	0.21348315	0.09550562

Frequencies and Relative Frequencies

```> table(sport) sport```			
Baseball/softball	Basketball	Bicycling	Jogging/running
11	19	11	11
Others	Soccer	Touch Football	Volleyball
47	24	38	17
> table(sport) / sport	$\mathrm{rt})[1]$		
Baseball/softball	Basketball	Bicycling	Jogging/running
0.06179775	0.10674157	0.06179775	0.06179775
Others	Soccer	Touch Football	Volleyball
0.26404494	0.13483146	0.21348315	0.09550562

How could we visualize these information?
$\Rightarrow$ Making a bar chart and/or a pie chart

## Bar Charts

A bar chart draws a bar with a height proportional to the count in the table:


## Bar Charts cont'd




## Pie Charts cont'd



## Bar Charts vs. Pie Charts

## Discussion: Which one you prefer to visualize categorical variables. Why?

## A Good Bar Chart



## A (Potential) Misleading Bar Chart

## Same Data, Different Y-Axis



## Example: O'Hare Airport Flight Data



	carrier	origin
1	UA	EWR
2	AA	LGA
3	AA	LGA
4	AA	LGA
5	UA	LGA
6	UA	EWR

In this example, we have two categorical variables, carrier and origin, respectively. How to summarize/visualize this dataset?

## ORD Flight Data Cont'd



$$
\begin{array}{rrr} 
& \text { EWR } & \text { LGA } \\
\text { AA } & 0.00 & 0.45 \\
\text { UA } & 0.30 & 0.25
\end{array}
$$



Summarizing
Categorical Data
Summarizing
Numerical Data

## Summarizing Numerical Variables

Data: 13.2, 10.0, 8.1, 8.8, 9.0, 7.9, 3.3, 5.9,

$$
13.2,12.7,3.2,2.2,8.5,4.0,5.7,2.6,6.8 .
$$

Question: How to graphically summarize this data set?

## Stem-and-Leaf Plot

```
The decimal point is at the |
 0 | 8
 1 |
 2 | 1122667
 3 | 2348
 4 | 0349
 5 | 379
 6 | 00368
 7 | 2349
 8 | 158
 9 | 007
10 | 04
11 | 134
12 | 127
13 | 022
14 | 4
15 | 44
16 | 1
17 | 4
```


## Histogram

Histogram of US Murder Rate in 1973


Summarizing
Categorical Data
Summarizing
Numerical Data

## Histogram

Histogram of US Murder Rate in 1973


Summarizing
Categorical Data
Summarizing
Numerical Data

## Box-and-Whisker Plot

Murder Rate (per 100,000)

Summarizing
Categorical Data
Summarizing Numerical Data

## Shape of Distributions



Negative Skew


Positive Skew

Source: Skewness - Wikipedia

In the rest of the class, we will talk about how to summarize a numerical variable in terms of its center and spread

## Measures of Center

- A measure of center attempts to report a "typical" value for the variable
- When a measure of center is calculated with sample data it is a statistic
- When a measure of center is calculated with popular (e.g., census data) it is a parameter
- Measures: Mean, Median, Mode
- The population mean, denoted by $\mu_{X}$, is the sum of all the population values $\left(\left\{X_{i}, \cdots, X_{N}\right\}\right)$ divided by the size of the population $(N)$. That is,

$$
\mu_{X}=\frac{\sum_{i=1}^{N} X_{i}}{N}
$$

- The sample mean, denoted by $\bar{X}$ is the sum of all the sample values ( $\left\{X_{1}, \cdots, X_{n}\right\}$ ) divided by the sample size ( $n$ ). That is,

$$
\bar{X}=\frac{\sum_{i=1}^{n} X_{i}}{n}
$$

The median is the value separating the higher half from the lower half of a data sample

How to compute the median: Order the $n$ observations in a data set from smallest to largest, then

Median $= \begin{cases}\text { the single middle value, } & n \text { odd } \\ \text { the average of the middle two values, } & n \text { even }\end{cases}$

The mode is the value of the observation that appears most frequently

How to compute the mode(s): Order the observations in a data set from smallest to largest, then find the number that is repeated more often than any other

## Example

Suppose we have the following list of values: $13,18,13,14$, 13, 16, 14, 21, 13

- Plot this "data set" and describe the shape of the distribution




## Example cont'd

Suppose we have the following list of values: $13,18,13,14$, 13, 16, 14, 21, 13

- Find the sample mean

$$
\bar{X}=\sum_{i=1}^{9} \frac{13+18+13+14+13+16+14+21+13}{9}=15
$$

- Find the sample median

O Order the data first: $13,13,13,13,14,14,16,18,21$

## Example cont'd

Suppose we have the following list of values: $13,18,13,14$, 13, 16, 14, 21, 13

- Find the sample mean

$$
\bar{X}=\sum_{i=1}^{9} \frac{13+18+13+14+13+16+14+21+13}{9}=15
$$

- Find the sample median

O Order the data first: $13,13,13,13,14,14,16,18,21$

## Example cont'd

Suppose we have the following list of values: $13,18,13,14$, 13, 16, 14, 21, 13

- Find the sample mean

$$
\bar{X}=\sum_{i=1}^{9} \frac{13+18+13+14+13+16+14+21+13}{9}=15
$$

- Find the sample median

O Order the data first: $13,13,13,13,14,14,16,18,21$
C Compute the sample size $n$ and identify (or compute) the median value

## Example cont'd

Suppose we have the following list of values: $13,18,13,14$, 13, 16, 14, 21, 13

- Find the sample mean

$$
\bar{X}=\sum_{i=1}^{9} \frac{13+18+13+14+13+16+14+21+13}{9}=15
$$

- Find the sample median

O Order the data first: $13,13,13,13,14,14,16,18,21$
C Compute the sample size $n$ and identify (or compute) the median value

## Example cont'd

Suppose we have the following list of values: $13,18,13,14$, 13, 16, 14, 21, 13

- Find the sample mean

$$
\bar{X}=\sum_{i=1}^{9} \frac{13+18+13+14+13+16+14+21+13}{9}=15
$$

- Find the sample median

O Order the data first: $13,13,13,13,14,14,16,18,21$
C Compute the sample size $n$ and identify (or compute) the median value
(C) $n=9 \Rightarrow$ the median is the 5 th number, which is 14

## Example cont'd

- Find the mode

O Order the data first: $13,13,13,13,14,14,16,18,21$

## Example cont'd

- Find the mode

O Order the data first: $13,13,13,13,14,14,16,18,21$

## Example cont'd

- Find the mode

O Order the data first: $13,13,13,13,14,14,16,18,21$
(c) We have 413 and $214 \Rightarrow 13$ is the mode

## Example: Resistant (Robust) Statistics

Suppose we have the following list of values: $13,18,13,14$, 13, 16, 14, 210, 13

- Find the sample mean

$$
\bar{X}=\sum_{i=1}^{9} \frac{13+18+13+14+13+16+14+210+13}{9}=36
$$

- Find the sample median

O Order the data first: $13,13,13,13,14,14,16,18,210$

## Example: Resistant (Robust) Statistics

Suppose we have the following list of values: $13,18,13,14$, 13, 16, 14, 210, 13

- Find the sample mean

$$
\bar{X}=\sum_{i=1}^{9} \frac{13+18+13+14+13+16+14+210+13}{9}=36
$$

- Find the sample median

O Order the data first: $13,13,13,13,14,14,16,18,210$

## Example: Resistant (Robust) Statistics

Suppose we have the following list of values: $13,18,13,14$, 13, 16, 14, 210, 13

- Find the sample mean

$$
\bar{X}=\sum_{i=1}^{9} \frac{13+18+13+14+13+16+14+210+13}{9}=36
$$

- Find the sample median

O Order the data first: $13,13,13,13,14,14,16,18,210$
C Compute the sample size $n$ and identify (or compute) the median value

## Example: Resistant (Robust) Statistics

Suppose we have the following list of values: $13,18,13,14$, 13, 16, 14, 210, 13

- Find the sample mean

$$
\bar{X}=\sum_{i=1}^{9} \frac{13+18+13+14+13+16+14+210+13}{9}=36
$$

- Find the sample median

O Order the data first: $13,13,13,13,14,14,16,18,210$
C Compute the sample size $n$ and identify (or compute) the median value

## Example: Resistant (Robust) Statistics

Suppose we have the following list of values: $13,18,13,14$, 13, 16, 14, 210, 13

- Find the sample mean

$$
\bar{X}=\sum_{i=1}^{9} \frac{13+18+13+14+13+16+14+210+13}{9}=36
$$

- Find the sample median

O Order the data first: $13,13,13,13,14,14,16,18,210$
C Compute the sample size $n$ and identify (or compute) the median value
(3) $n=9 \Rightarrow$ the median is the 5th number, which is (still) 14

## Example cont'd

- Find the mode

O Order the data first: $13,13,13,13,14,14,16,18,210$

## Example cont'd

- Find the mode

O Order the data first: $13,13,13,13,14,14,16,18,210$

## Example cont'd

- Find the mode

O Order the data first: $13,13,13,13,14,14,16,18,210$
(C) We have 413 and $214 \Rightarrow 13$ is (still) the mode

## Example cont'd

- Find the mode

O Order the data first: $13,13,13,13,14,14,16,18,210$
(C) We have 413 and $214 \Rightarrow 13$ is (still) the mode

## Example cont'd

- Find the mode

O Order the data first: $13,13,13,13,14,14,16,18,210$
(C) We have 413 and $214 \Rightarrow 13$ is (still) the mode

What is the take-home message?

## Summary

In this lecture, we learned

- Summarizing Categorical Data
- Summarizing the Central Tendency of Numerical Data

In next lecture we will learn

- How to summarize the spread of numerical data
- How to construct a boxplot
- How to visualize numerical + categorical variables and numerical + numerical variables

