Lecture 20 Categorical Data Analysis III

Readings: IntroStat Chapter 10

STAT 8010 Statistical Methods I June 14, 2023

Whitney Huang Clemson University

Agenda

(1) Contingency Table: Test for Independence

2 Fisher's Exact Test

A 2011 study was conducted in Kalamazoo, Michigan. The objective was to determine if parents' marital status affects children's marital status later in their life. In total, 2,000 children were interviewed. The columns refer to the parents' marital status. Use the contingency table below to conduct a χ^{2} test from beginning to end. Use α $=.10$

(Observed)	Married	Divorced	Total
Married	581	487	
Divorced	455	477	
Total			

- Define the Null and Alternative hypotheses:
H_{0} : there is no relationship between parents' marital status and childrens' marital status.
H_{a} : there is a relationship between parents' marital status and childrens' marital status
(2) Calculate the marginal totals, and the grand total

(Observed)	Married	Divorced	Total
Married	581	487	1068
Divorced	455	477	932
Total	1036	964	2000

Example Cont'd

(3) Calculate the expected cell counts

(Expected)	Married	Divorced
Married	$\frac{1068 \times 1036}{20000}=553.224$	$\frac{1068 \times 964}{2000}=514.776$
Divorced	$\frac{932 \times 1036}{2000}=482.776$	$\frac{322 \times 64}{2000}=449.224$

Example Cont'd

© Calculate the expected cell counts

(Expected)	Married	Divorced
Married	$\frac{1068 \times 1036}{20000}=553.224$	$\frac{1068 \times 964}{2000}=514.776$
Divorced	$\frac{932 \times 1036}{2000}=482.776$	$\frac{322 \times 64}{2000}=449.224$

- Calculate the partial χ^{2} values

partial χ^{2}	Married	Divorced
Married	$\frac{(581-553.224)^{2}}{55.224}=1.39$	$\frac{(487-514.776)^{2}}{54.776}=1.50$
Divorced	$\frac{(455-488.776)^{2}}{482.776}=1.60$	$\frac{(477-499.224)^{2}}{449.224}=1.72$

Example Cont'd

(3) Calculate the expected cell counts

(Expected)	Married	Divorced
Married	$\frac{1068 \times 1036}{20000}=553.224$	$\frac{1068 \times 964}{2000}=514.776$
Divorced	$\frac{932 \times 1036}{2000}=482.776$	$\frac{322 \times 64}{2000}=449.224$

- Calculate the partial χ^{2} values

partial χ^{2}	Married	Divorced
Married	$\frac{(581-553.224)^{2}}{55.224}=1.39$	$\frac{(487-514.776)^{2}}{54.776}=1.50$
Divorced	$\frac{(455-488.776)^{2}}{482.776}=1.60$	$\frac{(477-499.224)^{2}}{449.224}=1.72$

(6) Calculate the χ^{2} statistic
$\chi^{2}=1.39+1.50+1.60+1.72=6.21$

Example Cont'd

(3) Calculate the expected cell counts

(Expected)	Married	Divorced
Married	$\frac{1068 \times 1036}{20000}=553.224$	$\frac{1068 \times 964}{2000}=514.776$
Divorced	$\frac{932 \times 1036}{2000}=482.776$	$\frac{32 \times 864}{2000}=449.224$

- Calculate the partial χ^{2} values

partial χ^{2}	Married	Divorced
Married	$\frac{(581-553.224)^{2}}{553.224}=1.39$	$\frac{(487-514.776)^{2}}{54.776}=1.50$
Divorced	$\frac{(455-482.776)^{2}}{482.776}=1.60$	$\frac{(477-449.224)^{2}}{449.224}=1.72$

(6) Calculate the χ^{2} statistic
$\chi^{2}=1.39+1.50+1.60+1.72=6.21$
(0) Calculate the degrees of freedom (df)

The $d f$ is $(2-1) \times(2-1)=1$

Example Cont'd

© Calculate the expected cell counts

(Expected)	Married	Divorced
Married	$\frac{1068 \times 1036}{20000}=553.224$	$\frac{1068 \times 964}{2000}=514.776$
Divorced	$\frac{932 \times 1036}{2000}=482.776$	$\frac{932 \times 644}{2000}=449.224$

- Calculate the partial χ^{2} values

partial χ^{2}	Married	Divorced
Married	$\frac{(581-553.224)^{2}}{553.224}=1.39$	$\frac{(487-514.776)^{2}}{54.776}=1.50$
Divorced	$\frac{(455-482.776)^{2}}{482.776}=1.60$	$\frac{(477-449.224)^{2}}{449.224}=1.72$

(6) Calculate the χ^{2} statistic
$\chi^{2}=1.39+1.50+1.60+1.72=6.21$
(0) Calculate the degrees of freedom (df)

The $d f$ is $(2-1) \times(2-1)=1$

- Find the χ^{2} critical value with respect to α from the χ^{2} table The $\chi_{\alpha=0.1, d f=1}^{2}=2.71$

Example Cont'd

(3) Calculate the expected cell counts

(Expected)	Married	Divorced
Married	$\frac{1068 \times 1036}{20000}=553.224$	$\frac{1068 \times 964}{2000}=514.776$
Divorced	$\frac{932 \times 1036}{2000}=482.776$	$\frac{332 \times 964}{2000}=449.224$

- Calculate the partial χ^{2} values

partial χ^{2}	Married	Divorced
Married	$\frac{(581-553.224)^{2}}{553.224}=1.39$	$\frac{(487-514.776)^{2}}{514.776}=1.50$
Divorced	$\frac{(455-482.776)^{2}}{482.776}=1.60$	$\frac{(477-499.224)^{2}}{449.224}=1.72$

(0) Calculate the χ^{2} statistic
$\chi^{2}=1.39+1.50+1.60+1.72=6.21$
(0) Calculate the degrees of freedom (df)

The $d f$ is $(2-1) \times(2-1)=1$

- Find the χ^{2} critical value with respect to α from the χ^{2} table The $\chi_{\alpha=0.1, d f=1}^{2}=2.71$
(3) Draw your conclusion:

We reject H_{0} and conclude that there is a relationship between parents' marital status and childrens' marital status.

The following contingency table contains enrollment data for a random sample of students from several colleges at Purdue University during the 2006-2007 academic year. The table lists the number of male and female students enrolled in each college. Use the two-way table to conduct a χ^{2} test from beginning to end. Use $\alpha=.01$

(Observed)	Female	Male	Total
Liberal Arts	378	262	640
Science	99	175	274
Engineering	104	510	614
Total	581	947	1528

(Expected)	Female	Male
Liberal Arts	$\frac{6405881}{1588}=243.35$	$\frac{640 \times 941}{11528}=396.65$
Science	$\frac{24 \times 581}{1588}=104.18$	$\frac{214 \times 471}{1528}=169.82$
Engineering	$\frac{614 \times 581}{1528}=233.46$	$\frac{14 \times 47}{1528}=380.54$

partial χ^{2}	Female	Male
Lib Arts	$\frac{(378-243.35)^{2}}{243.35}=74.50$	$\frac{(262-396.65)^{2}}{396.65}=45.71$
Sci	$\frac{(99-104.18)^{2}}{104.18}=0.26$	$\frac{(175-169.82)^{2}}{169.82}=0.16$
Eng	$\frac{(104-233.46)^{2}}{233.46}=71.79$	$\frac{(510-380.54)^{2}}{380.54}=44.05$

$\chi^{2}=74.50+45.71+0.26+0.16+71.79+44.05=236.47$
The $d f=(3-1) \times(2-1)=2 \Rightarrow$ Critical value $\chi_{\alpha=.01, d f=2}^{2}=9.21$
Therefore we reject H_{0} (at .01 level) and conclude that there is a relationship between gender and major.

R Code \& Output

colnames(table) <- c("Female", "Male")
"Engineering")
table
Female Male

Liberal Arts	378	262
Science	99	175
Engineering	104	510

chisq.test(table)|

> Pearson's Chi-squared test
data: table
X-squared $=236.47, \mathrm{df}=2, \mathrm{p}$-value <
$2.2 e-16$

Take Another Look at the Example

(Proportion)	Female	Male	Total
Liberal Arts	$.59(.65)$	$.41(.28)$	$(.42)$
Science	$.36(.17)$	$.64(.18)$	$(.18)$
Engineering	$.17(.18)$	$.83(.54)$	$(.40)$
Total	.38	.62	1

Rejecting $H_{0} \Rightarrow$ conditional probabilities are not consistent with marginal probabilities

Example: Comparing Two Population Proportions

Let $p_{1}=\mathrm{P}($ Female \mid Liberal Arts $)$ and $p_{2}=\mathrm{P}($ Female \mid Science $)$.

$$
n_{1}=640, X_{1}=378, n_{2}=274, X_{2}=99
$$

- $H_{0}: p_{1}-p_{2}=0$ vs. $H_{a}: p_{1}-p_{2} \neq 0$
- $z_{\text {obs }}=\frac{.59-.36}{\sqrt{\frac{52 \times .48}{640}+\frac{55 \times 48}{274}}}=6.36>z_{0.025}=1.96$
- We do have enough statistical evidence to conclude that $p_{1} \neq p_{2}$ at . 05% significant level.

R Code \& Output

```
prop.test(x = c(378, 99), n = c(640, 274),
correct = F)
    2-sample test for equality of
    proportions without continuity
    correction
data: c(378, 99) out of c(640, 274)
X-squared = 40.432, df = 1, p-value =
2.036e-10
alternative hypothesis: two.sided
95 percent confidence interval:
    0.1608524 0.2977699
sample estimates:
    prop 1 prop 2
0.5906250 0.3613139
```


Example: Test for Homogeneity

Let $p_{1}=\mathrm{P}($ Liberal Arts $), p_{2}=\mathrm{P}($ Science $), p_{3}=\mathrm{P}($ Engineering $)$

- The Hypotheses:
$H_{0}: p_{1}=p_{2}=p_{3}=\frac{1}{3}$
H_{a} : At least one is different
- The Test Statistic:

$$
\begin{aligned}
\chi_{o b s}^{2} & =\frac{(640-509.33)^{2}}{509.33}+\frac{(274-509.33)^{2}}{509.33}+\frac{(614-509.33)^{2}}{509.33} \\
& =33.52+108.73+21.51=163.76>\chi_{.05, d f=2}^{2}=5.99
\end{aligned}
$$

- Rejecting H_{0} at .05 level

R Code \& Output

chisq.test $(x=c(640,274,614), p=\operatorname{rep}(1 / 3,3))$
Chi-squared test for given probabilities

```
data: c(640, 274, 614)
X-squared = 163.76, df = 2, p-value
< 2.2e-16
```


The Lady Tasting Tea

THE LADY	Chapter/Section Title	Page \#	Page Count
Tasting TEA How Statistics Revolutionized Science IN THE TWENTIETH CENTURY	Author's Preface	vii	
	The Lady Tasting Tea	1	8
	The Skew Distributions	9	16
	That Dear Mr. Gosset	25	8
	Raking Over the Muck Heap	33	8
	"Studies In Crop Variation"	41	12
	"The Hundred-Year Flood"	53	8
	Fisher Triumphant	61	12
	The Dose That Kills	73	10
	The Bell-Shaped Curve	83	10
DAVID SALSBURG	Testing the Goodness of Fit	93	14
	Hypothesis Testing	107	10
	The Confidence Trick	117	8

The Lady Tasting Tea Experiment

A lady declares that by tasting a cup of tea made with milk she can discriminate whether the milk or the tea infusion was first added to the cup. We will consider the problem of designing an experiment by means of which this assertion can be tested. [...] [It] consists in mixing eight cups of tea, four in one way and four in the other, and presenting them to the subject for judgment in a random order. The subject has been told in advance of that the test will consist, namely, that she will be asked to taste eight cups, that these shall be four of each kind [...]. - Fisher, 1935.

R Code \& Output

```
TeaTasting <-
matrix(c(3, 1, 1, 3), nrow = 2,
    dimnames = list(Guess = c("Milk", "Tea"),
                        Truth = c("Milk", "Tea")))
```

TeaTasting
Truth
Guess Milk Tea
Milk 31

Tea 13
fisher.test(TeaTasting, alternative = "greater")
Fisher's Exact Test for Count Data
data: TeaTasting
p-value $=0.2429$
alternative hypothesis: true odds ratio is greater than 1

Summary

In this lecture, we learned

- Test for Independence
- Test for Homogenelty
- Fisher's Exact Test

