## Lecture 21 <br> Correlation and Regression Analysis

Readings: IntroStat Chapter 11; OpenIntro Chapter 8
STAT 8010 Statistical Methods I June 15, 2023

Whitney Huang Clemson University

Characterizing the
Relationship Between Twin Numerinal
Variables
(1) Characterizing the Relationship Between Two Numerical Variables
(2) Regression Analysis
(3) Simple Linear Regression

## Motivated Example: Maximum Heart Rate vs. Age

Suppose we have 15 people of varying ages are tested for their maximum heart rate (MHR):

Characterizing the
Relationship Between

| Age | 18 | 23 | 25 | 35 | 65 | 54 | 34 | 56 | 72 | 19 | 23 | 42 | 18 | 39 | 37 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MHR | 202 | 186 | 187 | 180 | 156 | 169 | 174 | 172 | 153 | 199 | 193 | 174 | 198 | 183 | 178 |



Question: How to describe the relationship between maximum heart rate and age?

## Scatterplot

A scatterplot is a useful tool to graphically display the relationship between two numerical variables. Each dot on the scatterplot represents one observation from the data


## Scatterplot Cont'd

Typical questions we want to ask for a scatterplot:
Characterizing the
Relationship Between Two Numerical Variables

- the form of relationship between two variables e.g. linear, quadratic, $\cdots$


## Scatterplot Cont'd

Typical questions we want to ask for a scatterplot:

- the form of relationship between two variables e.g. linear, quadratic, $\cdots$
- the strength of the relationship between two variables e.g. weak, moderate, strong


## Scatterplot Cont'd

Typical questions we want to ask for a scatterplot:

- the form of relationship between two variables e.g. linear, quadratic, …
- the strength of the relationship between two variables e.g. weak, moderate, strong
- the direction of the relationship between two variables e.g positive, negative


## Scatterplot Cont'd

Typical questions we want to ask for a scatterplot:

- the form of relationship between two variables e.g. linear, quadratic, …
- the strength of the relationship between two variables e.g. weak, moderate, strong
- the direction of the relationship between two variables e.g positive, negative


## Scatterplot Cont'd

Typical questions we want to ask for a scatterplot:

- the form of relationship between two variables e.g. linear, quadratic, $\cdots$
- the strength of the relationship between two variables e.g. weak, moderate, strong
- the direction of the relationship between two variables e.g positive, negative

In the next few slides we will learn how to quantify the strength and direction of the linear relationship between two variables

## Variance, Covariance, and Correlation

- Recall: Variance is a measure of the variability of one quantitative variable

Characterizing the
Relationship Between
Two Numerical
Variables

## Variance, Covariance, and Correlation

- Recall: Variance is a measure of the variability of one quantitative variable
- Covariance is a measure of how much two quantitative random variables change together


## Variance, Covariance, and Correlation

- Recall: Variance is a measure of the variability of one quantitative variable
- Covariance is a measure of how much two quantitative random variables change together
- The sign of the covariance shows the direction in the linear relationship between the variables


## Variance, Covariance, and Correlation

- Recall: Variance is a measure of the variability of one quantitative variable
- Covariance is a measure of how much two quantitative random variables change together
- The sign of the covariance shows the direction in the linear relationship between the variables
- The normalized version of the covariance, the correlation shows both the the direction and the strength of the linear relation


## Correlation: Pearson Correlation Coefficient ( $\rho$ )

- We use $\rho$ to denote the population correlation and $r$ to denote the sample correlation
- The value of the correlation is between -1 and 1
- The strength of the linear relation:
- If $\rho=1(-1)$ : the two variables have a perfect positive (negative) linear relationship
- If $0.7<|\rho|<1$ : we say the two variables have a strong linear relationship
- If $0.3<|\rho|<0.7$ : we say the two variables have a moderate linear relationship
- If $0<|\rho|<0.3$ : we say the two variables have a weak linear relationship
- If $\rho=0$ : we say the two variables have no linear relationship


## Scatterplot \& Pearson Correlation Coefficient


1





Figure: Image courtesy of Wikipedia at https:
//en.wikipedia.org/wiki/Correlation_and_dependence

## Covariance and Correlation

- Recall: Variance
- Sample variance: $s_{X}^{2}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n-1}$

Characterizing the

- Population variance: $\sigma_{X}^{2}=\mathrm{E}\left[\left(X-\mu_{X}\right)^{2}\right]$
- Covariance
- Sample covariance: $s_{X, Y}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{n-1}$
- Population covariance: $\sigma_{X, Y}=\mathrm{E}\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]$
- Correlation
- Sample correlation: $r_{X, Y}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sqrt{\sum_{i=1}^{n}\left(X_{i}-\overline{)^{2}}\right.} \sqrt{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}}$ or $\frac{s_{X, Y}}{s_{X} s_{Y}}$
- Population correlation: $\rho_{X, Y}=\frac{\mathrm{E}\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]}{\sqrt{\mathrm{E}\left[\left(X-\mu_{X}\right)^{2}\right]} \sqrt{E\left[\left(Y-\mu_{Y}\right)^{2}\right]}}$ or $\frac{\sigma_{X, Y}}{\sigma_{X} \sigma_{Y}}$


## A Toy Example

You wonder how sleep affects productivity. You take a sample of 4 of your friends and measure last night's sleep and today's productivity in hours. Here are the results:

| Sleep $(X)$ | Productivity $(Y)$ |
| :---: | :---: |
| 2 | 4 |
| 4 | 12 |
| 6 | 14 |
| 10 | 10 |

Calculate the means, variances, and standard deviations of each variable and the correlation coefficient of these two variables

## Toy Example Cont'd

## Solution.

Let $X$ denote last night's sleep in hours and $Y$ denote today's productivity in hours

Characterizing the
Relationship Between Two Numerical Variables

- $\bar{X}=\frac{2+4+6+10}{4}=5.5, \quad \bar{Y}=\frac{4+12+14+10}{4}=10$
- $s_{X}^{2}=\frac{(2-5.5)^{2}+(4-5.5)^{2}+(6-5.5)^{2}+(10-5.5)^{2}}{4-1}=\frac{35}{3}$
$s_{Y}^{2}=\frac{(4-10)^{2}+(12-10)^{2}+(14-10)^{2}+(10-10)^{2}}{4-1}=\frac{56}{3}$
- $s_{X}=\sqrt{s_{X}^{2}}=\sqrt{\frac{35}{3}}, \quad s_{Y}=\sqrt{s_{Y}^{2}}=\sqrt{\frac{56}{3}}$
- $r_{X, Y}=\frac{s_{X, Y}}{s_{X} s_{Y}}$
$s_{X, Y}=\frac{(2-5.5)(4-10)+(4-5.5)(12-10)+(6-5.5)(14-10)+(10-5.5)(10-10)}{3}$
$=\frac{20}{3} \Rightarrow r_{X, Y}=\frac{\frac{20}{3}}{\sqrt{\frac{35}{3}} \sqrt{\frac{56}{3}}}=\frac{20}{\sqrt{35 \times 56}}=0.4518$


## Inference/Hypothesis Test on $\rho$

(1) $H_{0}: \rho=0$ vs. $H_{a}: \rho \neq 0$

Characterizing the
(3) Test statistic: $t^{*}=r \sqrt{\frac{n-2}{1-r^{2}}}$

- Under $H_{0}: t^{*} \sim t_{d f=n-2}$


Figure: Image courtesy of Wikipedia

## Maximum Heart Rate Example Revisited



We may want to predict maximum heart rate for an individual based on his/her age $\Rightarrow$ Regression Analysis

## What is Regression Analysis?

Regression analysis: A set of statistical procedures for estimating the relationship between response variable and predictor variable(s)


## Scatterplot: Is Linear Trend Reasonable?



Characterizing the
Relationship Between Two Numerical
Variables
Regression Analysis
Simple Linear
Regression

## Simple Linear Regression (SLR)

$Y$ : dependent (response) variable; $X$ : independent (predictor) variable

- In SLR we assume there is a linear relationship between $X$ and $Y$ :

$$
Y=\beta_{0}+\beta_{1} X+\varepsilon
$$

- We will need to estimate $\beta_{0}$ (intercept) and $\beta_{1}$ (slope)
- Then we can use the estimated regression equation to
- make predictions
- study the relationship between response and predictor
- control the response


## Regression equation: $Y=\beta_{0}+\beta_{1} X$



- $\beta_{0}: \mathrm{E}[Y]$ when $X=0$
- $\beta_{1}: \mathrm{E}[\Delta Y]$ when $X$ increases by 1


## Assumptions about the Random Error $\varepsilon$

In order to estimate $\beta_{0}$ and $\beta_{1}$, we make the following assumptions about $\varepsilon$

- $\mathrm{E}\left[\varepsilon_{i}\right]=0$
- $\operatorname{Var}\left[\varepsilon_{i}\right]=\sigma^{2}$
- $\operatorname{Cov}\left[\varepsilon_{i}, \varepsilon_{j}\right]=0, \quad i \neq j$

Therefore, we have

$$
\begin{aligned}
& \mathrm{E}\left[Y_{i}\right]=\beta_{0}+\beta_{1} X_{i}, \text { and } \\
& \operatorname{Var}\left[Y_{i}\right]=\sigma^{2}
\end{aligned}
$$

The regression line $\beta_{0}+\beta_{1} X$ represents the conditional expectation curve whereas $\sigma^{2}$ measures the magnitude of the variation around the regression curve

## Summary

In this lecture, we learned

- Scatterplot, Covariance, Correlation
- Regression Analysis and Simple Linear Regression

Next lecture we will learn how to estimate the regression parameters $\beta_{0}, \beta_{1}$ and how to quantify the estimation uncertainty

