# Lecture 22 Simple Linear Regression I <br> Readings: IntroStat Chapter 11; OpenIntro Chapter 8 <br> STAT 8010 Statistical Methods I June 16, 2023 

Whitney Huang Clemson University

## Agenda

# (1) Simple Linear Regression (SLR) 

Simple Linear
Regression (SLR)
Parameter Estimation in SLR

Decidual A nalysis

(2) Parameter Estimation in SLR

(3) Residual Analysis

## What is Regression Analysis?

Regression analysis: A set of statistical procedures for estimating the relationship between response variable and predictor variable(s)


We will focus on simple linear regression in this class

## Scatterplot: Is Linear Trend Reasonable?



The relationship appears to be linear. What about the direction and strength of this linear relationship?
> cov(age, maxHeartRate)
[1] -243.9524

## Scatterplot: Is Linear Trend Reasonable?



The relationship appears to be linear. What about the direction and strength of this linear relationship?
> cov(age, maxHeartRate)
> cor(age, maxHeartRate)
[1] -243.9524
[1] -0.9534656

## Simple Linear Regression (SLR)

$Y$ : dependent (response) variable; $X$ : independent (predictor) variable

- In SLR we assume there is a linear relationship between $X$ and $Y$ :

$$
Y=\beta_{0}+\beta_{1} X+\varepsilon
$$

- We need to estimate $\beta_{0}$ (intercept) and $\beta_{1}$ (slope)
- We can use the estimated regression equation to
- make predictions
- study the relationship between response and predictor
- control the response
- Yet we need to quantify our estimation uncertainty regarding the linear relationship (will talk about this next time)


## Regression equation: $Y=\beta_{0}+\beta_{1} X$



- $\beta_{0}: \mathrm{E}[Y]$ when $X=0$
- $\beta_{1}: \mathrm{E}[\Delta Y]$ when $X$ increases by 1


## Assumptions about the Random Error $\varepsilon$

In order to estimate $\beta_{0}$ and $\beta_{1}$, we make the following assumptions about $\varepsilon$

- $\mathrm{E}\left[\varepsilon_{i}\right]=0$
- $\operatorname{Var}\left[\varepsilon_{i}\right]=\sigma^{2}$
- $\operatorname{Cov}\left[\varepsilon_{i}, \varepsilon_{j}\right]=0, \quad i \neq j$

Therefore, we have

$$
\begin{aligned}
& \mathrm{E}\left[Y_{i}\right]=\beta_{0}+\beta_{1} X_{i}, \text { and } \\
& \operatorname{Var}\left[Y_{i}\right]=\sigma^{2}
\end{aligned}
$$

The regression line $\beta_{0}+\beta_{1} X$ represents the conditional expectation curve whereas $\sigma^{2}$ measures the magnitude of the variation around the regression curve

## Estimation: Method of Least Squares

For the given observations $\left(x_{i}, y_{i}\right)_{i=1}^{n}$, choose $\beta_{0}$ and $\beta_{1}$ to minimize the sum of squared errors:

$$
\mathrm{L}\left(\beta_{0}, \beta_{1}\right)=\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}
$$

Solving the above minimization problem requires some knowledge from Calculus....

## Estimation: Method of Least Squares

For the given observations $\left(x_{i}, y_{i}\right)_{i=1}^{n}$, choose $\beta_{0}$ and $\beta_{1}$ to minimize the sum of squared errors:

$$
\mathrm{L}\left(\beta_{0}, \beta_{1}\right)=\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}
$$

Solving the above minimization problem requires some knowledge from Calculus....

$$
\hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}
$$

## Estimation: Method of Least Squares

For the given observations $\left(x_{i}, y_{i}\right)_{i=1}^{n}$, choose $\beta_{0}$ and $\beta_{1}$ to minimize the sum of squared errors:

$$
\mathrm{L}\left(\beta_{0}, \beta_{1}\right)=\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}
$$

Solving the above minimization problem requires some knowledge from Calculus....

$$
\begin{gathered}
\hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}} \\
\hat{\beta}_{0}=\bar{Y}-\hat{\beta_{1}} \bar{X}
\end{gathered}
$$

## Estimation: Method of Least Squares

For the given observations $\left(x_{i}, y_{i}\right)_{i=1}^{n}$, choose $\beta_{0}$ and $\beta_{1}$ to minimize the sum of squared errors:

$$
\mathrm{L}\left(\beta_{0}, \beta_{1}\right)=\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}
$$

Solving the above minimization problem requires some knowledge from Calculus....

$$
\begin{gathered}
\hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}} \\
\hat{\beta}_{0}=\bar{Y}-\hat{\beta_{1}} \bar{X}
\end{gathered}
$$

## Estimation: Method of Least Squares

For the given observations $\left(x_{i}, y_{i}\right)_{i=1}^{n}$, choose $\beta_{0}$ and $\beta_{1}$ to minimize the sum of squared errors:

$$
\mathrm{L}\left(\beta_{0}, \beta_{1}\right)=\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}
$$

Solving the above minimization problem requires some knowledge from Calculus....

$$
\begin{gathered}
\hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}} \\
\hat{\beta}_{0}=\bar{Y}-\hat{\beta}_{1} \bar{X}
\end{gathered}
$$

We also need to estimate $\sigma^{2}$

## Estimation: Method of Least Squares

For the given observations $\left(x_{i}, y_{i}\right)_{i=1}^{n}$, choose $\beta_{0}$ and $\beta_{1}$ to minimize the sum of squared errors:

$$
\mathrm{L}\left(\beta_{0}, \beta_{1}\right)=\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}
$$

Solving the above minimization problem requires some knowledge from Calculus....

$$
\begin{gathered}
\hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}} \\
\hat{\beta}_{0}=\bar{Y}-\hat{\beta_{1}} \bar{X}
\end{gathered}
$$

We also need to estimate $\sigma^{2}$

$$
\hat{\sigma}^{2}=\frac{\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}}{n-2}, \text { where } \hat{Y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{i}
$$

## Properties of Least Squares Estimates

- Gauss-Markov theorem states that in a linear regression these least squares estimators
- Are unbiased, i.e.,
- $\mathrm{E}\left[\hat{\beta}_{1}\right]=\beta_{1} ; \mathrm{E}\left[\hat{\beta}_{0}\right]=\beta_{0}$
- $\mathrm{E}\left[\hat{\sigma}^{2}\right]=\sigma^{2}$
(2) Have minimum variance among all unbiased linear estimators

Note that we do not make any distributional assumption on $\varepsilon_{i}$

The maximum heart rate MaxHeartRate of a person is often said to be related to age Age by the equation:

$$
\text { MaxHeartRate = } 220-\text { Age } .
$$

Suppose we have 15 people of varying ages are tested for their maximum heart rate (bpm) (link to the "dataset": http :
//whitneyhuang83.github.io/maxHeartRate.csv)

- Compute the estimates for the regression coefficients
(2) Compute the fitted values
(Compute the estimate for $\sigma$


## Estimate the Parameters $\beta_{1}, \beta_{0}$, and $\sigma^{2}$

$Y_{i}$ and $X_{i}$ are the Maximum Heart Rate and Age of the $\mathrm{i}^{\text {th }}$ individual

- To obtain $\hat{\beta}_{1}$
(1) Compute $\bar{Y}=\frac{\sum_{i=1}^{n} Y_{i}}{n}, \bar{X}=\frac{\sum_{i=1}^{n} X_{i}}{n}$
(2) Compute $Y_{i}-\bar{Y}, X_{i}-\bar{X}$, and $\left(X_{i}-\bar{X}\right)^{2}$ for each observation
(3) Compute $\sum_{i}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)$ divived by $\sum_{i}^{n}\left(X_{i}-\bar{X}\right)^{2}$
- $\hat{\beta}_{0}$ : Compute $\bar{Y}-\hat{\beta}_{1} \bar{X}$
- $\hat{\sigma}^{2}$
(1) Compute the fitted values: $\hat{Y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{i}, \quad i=1, \cdots, n$
(2) Compute the residuals $e_{i}=Y_{i}-\hat{Y}_{i}, \quad i=1, \cdots, n$
(3) Compute the residual sum of squares (RSS) $=\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}$ and divided by $n-2$ (why?)


## Let's Do the Calculations

$$
\begin{aligned}
& \bar{X}=\sum_{i=1}^{15} \frac{18+23+\cdots+39+37}{15}=37.33 \\
& \bar{Y}=\sum_{i=1}^{15} \frac{202+186+\cdots+183+178}{15}=180.27
\end{aligned}
$$

| $X$ | 18 | 23 | 25 | 35 | 65 | 54 | 34 | 56 | 72 | 19 | 23 | 42 | 18 | 39 | 37 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $Y$ | 202 | 186 | 187 | 180 | 156 | 169 | 174 | 172 | 153 | 199 | 193 | 174 | 198 | 183 | 178 |
|  | -19.33 | -14.33 | -12.33 | -2.33 | 27.67 | 16.67 | -3.33 | 18.67 | 34.67 | -18.33 | -14.33 | 4.67 | -19.33 | 1.67 | -0.33 |
|  | 21.73 | 5.73 | 6.73 | -0.27 | -24.27 | -11.27 | -6.27 | -8.27 | -27.27 | 18.73 | 12.73 | -6.27 | 17.73 | 2.73 | -2.27 |
|  | -420.18 | -82.18 | -83.04 | 0.62 | -671.38 | -187.78 | 20.89 | -154.31 | -945.24 | -343.44 | -182.51 | -29.24 | -342.84 | 4.56 | 0.76 |
|  | 373.78 | 205.44 | 152.11 | 5.44 | 765.44 | 277.78 | 11.11 | 348.44 | 1201.78 | 336.11 | 205.44 | 21.78 | 373.78 | 2.78 | 0.11 |
|  | 195.69 | 191.70 | 190.11 | 182.13 | 158.20 | 166.97 | 182.93 | 165.38 | 152.61 | 194.89 | 191.70 | 176.54 | 195.69 | 178.94 | 180.53 |

- $\hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}=-0.7977$
- $\hat{\beta}_{0}=\bar{Y}-\hat{\beta}_{1} \bar{X}=210.0485$
- $\hat{\sigma}^{2}=\frac{\sum_{i=1}^{15}\left(Y_{i}-\hat{Y}_{i}\right)^{2}}{13}=20.9563 \Rightarrow \hat{\sigma}=4.5778$


## Let's Double Check

## Output from $\mathbb{R}$ ( $\mathbb{R}^{\text {studio }}$ )

```
> fit <- lm(MaxHeartRate ~ Age)
> summary(fit)
Call:
lm(formula = MaxHeartRate ~ Age)
```

Residuals:
Min 10 Median 3Q Max
-8.9258 -2.5383 $0.38793 .1867 \quad 6.6242$

Coefficients:
Estimate Std. Error $t$ value $\operatorname{Pr}(>|t|)$
(Intercept) 210.04846 2.86694 $73.27<2 e-16$ ***
Age $\quad-0.79773 \quad 0.06996 \quad-11.40 \quad 3.85 \mathrm{e}-08$ ***
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 '.’ 0.1 ' ' 1

Residual standard error: 4.578 on 13 degrees of freedom Multiple R-squared: 0.9091, Adjusted R-squared: 0.9021 F-statistic: 130 on 1 and 13 DF, p-value: 3.848e-08

## Linear Regression Fit



Question: Is linear relationship between max heart rate and age reasonable? $\Rightarrow$ Residual Analysis

## Residuals

- The residuals are the differences between the observed and fitted values:

$$
e_{i}=Y_{i}-\hat{Y}_{i},
$$

where $\hat{Y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{i}$

- $e_{i}$ is NOT the error term $\varepsilon_{i}=Y_{i}-\mathrm{E}\left[Y_{i}\right]$
- Residuals are very useful in assessing the appropriateness of the assumptions on $\varepsilon_{i}$. Recall
- $\mathrm{E}\left[\varepsilon_{i}\right]=0$
- $\operatorname{Var}\left[\varepsilon_{i}\right]=\sigma^{2}$
- $\operatorname{Cov}\left[\varepsilon_{i}, \varepsilon_{j}\right]=0, \quad i \neq j$


## Maximum Heart Rate vs. Age Residual Plot: $\varepsilon$ vs. $X$



## Interpreting Residual Plots





## Interpreting Residual Plots



Figure: Figure courtesy of Faraway's Linear Models with R (2005, p. 59).

## Summary

In this lecture, we learned

- Simple Linear Regression
- Least Squares Estimation
- Residual Analysis

