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23.3

Recap: Simple Linear Regression
Y: dependent (response) variable; X: independent (predictor)
variable

In SLR we assume there is a linear relationship between
X and Y:

Yi = β0 + β1Xi + εi,

where E(εi) = 0, and Var(εi) = σ
2,∀i. Furthermore,

Cov(εi, εj) = 0,∀i ≠ j

Least Squares Estimation:
argminβ0,β1 ∑

n
i=1(Yi − (β0 + β1Xi))

2 ⇒

β̂1 = ∑
n
i=1(Xi−X̄)(Yi−Ȳ)

∑
n
i=1(Xi−X̄)2

β̂0 = Ȳ − β̂1X̄

σ̂2 = ∑n
i=1(Yi−Ŷi)

2

n−2

Residuals: ei = Yi − Ŷi, where Ŷi = β̂0 + β̂1Xi
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23.4

Recap: Residual Analysis
Residual Analysis: To check the appropriateness of SLR
model

Is the regression function linear?

Do εi’s have constant variance σ2?

Are εi’s indepdent to each other?

We plot residuals ei’s against Xi’s (or Ŷi’s) to assess these
aspects

Figure: Figure courtesy of Faraway’s Linear Models with R (2005, p.
59).
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How (Un)certain We Are?
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Can we formally quantify our estimation uncertainty? ⇒
We need additional (distributional) assumption on ε
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Normal Error Regression Model

Recall
Yi = β0 + β1Xi + εi

Further assume εi ∼ N(0, σ2)⇒ Yi ∼ N(β0 + β1Xi, σ
2)

With normality assumption, we can derive the sampling
distribution of β̂1 and β̂0 ⇒

β̂1−β1
σ̂
β̂1

∼ tn−2, σ̂β̂1
= σ̂
√

∑
n
i=1(Xi−X̄)2

β̂0−β0
σ̂
β̂0

∼ tn−2, σ̂β̂0
= σ̂
√
( 1

n + X̄2

∑
n
i=1(Xi−X̄)2 )

where tn−2 denotes the Student’s t distribution with n − 2
degrees of freedom
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23.7

Confidence Intervals

Recall β̂1−β1
σ̂β̂1

∼ tn−2, we use this fact to construct

confidence intervals (CIs) for β1:

[β̂1 − tα/2,n−2σ̂β̂1
, β̂1 + tα/2,n−2σ̂β̂1

] ,

where α is the confidence level and tα/2,n−2 denotes the
1 − α/2 percentile of a student’s t distribution with n − 2
degrees of freedom

Similarly, we can construct CIs for β0:

[β̂0 − tα/2,n−2σ̂β̂0
, β̂0 + tα/2,n−2σ̂β̂0

]
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23.8

Understanding Confidence Intervals
Suppose Y = β0 + β1X + ε, where β0 = 3, β1 = 1.5 and
σ2 ∼ N(0,1)

We take 100 random sample each with sample size 20

We then construct the 95% CI for each random sample (⇒
100 CIs)

1.0

1.2

1.4

1.6

1.8

2.0

Y = 3 + 1.5X + error

β 1
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Interval Estimation of E(Yh)

We often interested in estimating the mean response for a
particular value of predictor, say, Xh. Therefore we would
like to construct CI for E[Yh]

We need sampling distribution of Ŷh to form CI:

Ŷh−Yh
σ̂Ŷh
∼ tn−2, σ̂Ŷh

= σ̂
√
( 1

n + (Xh−X̄)2

∑
n
i=1(Xi−X̄)2 )

CI:
[Ŷh − tα/2,n−2σ̂Ŷh

, Ŷh + tα/2,n−2σ̂Ŷh
]

Quiz: Use this formula to construct CI for β0
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23.10

Prediction Intervals

Suppose we want to predict the response of a future
observation given X = Xh

We need to account for added variability as a new
observation does not fall directly on the regression line
(i.e., Yh(new) = E[Yh] + εh)

Replace σ̂Ŷh
by σ̂Ŷh(new)

= σ̂

√

(1 + 1
n +

(Xh−X̄)2

∑n
i=1(Xi−X̄)2 ) to construct

CIs for Yh(new)
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Confidence Intervals vs. Prediction Intervals
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Maximum Heart Rate vs. Age Revisited

The maximum heart rate MaxHeartRate (HRmax) of a person
is often said to be related to age Age by the equation:

HRmax = 220 −Age.

Suppose we have 15 people of varying ages are tested for their
maximum heart rate (bpm)

Age 18 23 25 35 65 54 34 56 72 19 23 42 18 39 37
HRmax 202 186 187 180 156 169 174 172 153 199 193 174 198 183 178

Construct the 95% CI for β1

Compute the estimate for mean MaxHeartRate given
Age = 40 and construct the associated 90% CI

Construct the prediction interval for a new observation
given Age = 40
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Maximum Heart Rate vs. Age: Hypothesis Test for Slope

1 H0 ∶ β1 = 0 vs. Ha ∶ β1 ≠ 0

2 Compute the test statistic: t∗ = β̂1−0
σ̂β̂1

= −0.7977
0.06996 = −11.40

3 Compute P-value: P(∣t∗∣ ≥ ∣tobs∣) = 3.85 × 10−8

4 Compare to α and draw conclusion:

Reject H0 at α = .05 level, evidence suggests a neg-
ative linear relationship between MaxHeartRate
and Age
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Maximum Heart Rate vs. Age: Hypothesis Test for Intercept

1 H0 ∶ β0 = 0 vs. Ha ∶ β0 ≠ 0

2 Compute the test statistic: t∗ = β̂0−0
σ̂β0
= 210.0485

2.86694 = 73.27

3 Compute P-value: P(∣t∗∣ ≥ ∣tobs∣) ≃ 0

4 Compare to α and draw conclusion:

Reject H0 at α = .05 level, evidence suggests
evidence suggests the intercept (the expected
MaxHeartRate at age 0) is different from 0
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Hypothesis Tests for βage = −1

H0 ∶ βage = −1 vs. Ha ∶ βage ≠ −1

Test Statistic: β̂age−(−1)
σ̂β̂age

=
−0.79773−(−1)

0.06996 = 2.8912

−4 −2 0 2 4

0.0

0.1

0.2

0.3

0.4

Test statistic

D
en

si
ty

tobs− tobs

P-value: 2 × P(t∗ > 2.8912) = 0.013, where t∗ ∼ tdf=13
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Analysis of Variance (ANOVA) Approach to Regression

Partitioning Sums of Squares
Total sums of squares in response

SST =
n

∑
i=1
(Yi − Ȳ)2

We can rewrite SST as
n

∑
i=1
(Yi − Ȳ)2 =

n

∑
i=1
(Yi − Ŷi + Ŷi − Ȳ)2

=
n

∑
i=1
(Yi − Ŷi)

2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Error

+
n

∑
i=1
(Ŷi − Ȳ)2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Model
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Partitioning Total Sums of Squares
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Total Sum of Squares: SST

If we ignored the predictor X, the Ȳ would be the best
(linear unbiased) predictor

Yi = β0 + εi (1)

SST is the sum of squared deviations for this predictor
(i.e., Ȳ)

The total mean square is SST/(n − 1) and represents an
unbiased estimate of σ2 under the model (1).
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Regression Sum of Squares: SSR

SSR: ∑n
i=1(Ŷi − Ȳ)2

Degrees of freedom is 1 due to the inclusion of the slope,
i.e.,

Yi = β0 + β1Xi + εi (2)

“Large” MSR = SSR/1 suggests a linear trend, because

E[MSR] = σ2
+ β2

1

n

∑
i=1
(Xi − X̄)2
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Error Sum of Squares: SSE

SSE is simply the sum of squared residuals

SSE =
n

∑
i=1
(Yi − Ŷi)

2

Degrees of freedom is n − 2 (Why?)

SSE large when ∣residuals∣ are “large"⇒ Yi’s vary
substantially around fitted regression line

MSE = SSE/(n − 2) and represents an unbiased estimate
of σ2 when taking X into account
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ANOVA Table and F test

Source df SS MS
Model 1 SSR = ∑n

i=1(Ŷi − Ȳ)2 MSR = SSR/1
Error n − 2 SSE = ∑n

i=1(Yi − Ŷi)
2 MSE = SSE/(n-2)

Total n − 1 SST = ∑n
i=1(Yi − Ȳ)2

Goal: To test H0 ∶ β1 = 0

Test statistics F∗ = MSR
MSE

If β1 = 0 then F∗ should be near one⇒ reject H0 when F∗

“large"

We need sampling distribution of F∗ under H0 ⇒ F1,n−2,
where Fd1,d2 denotes a F distribution with degrees of
freedom d1 and d2
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F Test: H0 ∶ β1 = 0 vs. Ha ∶ β1 ≠ 0
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SLR: F-Test vs. T-test

ANOVA Table and F-Test

Parameter Estimation and T-Test
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23.24

Summary

In this lecture, we learned

Normal Error Regression Model and statistical inference
for β0 and β1

Confidence/Prediction Intervals & Hypothesis Testing

ANOVA Approach to Regression

Next time we will talk about

1 Correlation (r) & Coefficient of Determination (R2)

2 Advanced topics in Regression Analysis
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