Lecture 23 Simple Linear Regression II Readings: IntroStat Chapter 11; OpenIntro Chapter 8

STAT 8010 Statistical Methods I June 19, 2023 Simple Linear Regression II

Confidence/Prediction Intervals

Hypothesis Testing

Analysis of Variance ANOVA) Approach to Regression

Whitney Huang Clemson University

Agenda

Analysis of Variance (ANOVA) Approach to Regression

Simple Linear Regression II

Confidence/Prediction Intervals

Hypothesis Testing

Recap: Simple Linear Regression

Y: dependent (response) variable; *X*: independent (predictor) variable

• In SLR we **assume** there is a **linear relationship** between *X* and *Y*:

 $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i,$

where $E(\varepsilon_i) = 0$, and $Var(\varepsilon_i) = \sigma^2$, $\forall i$. Furthermore, $Cov(\varepsilon_i, \varepsilon_j) = 0$, $\forall i \neq j$

- Least Squares Estimation:
 - $\operatorname{argmin}_{\beta_0,\beta_1} \sum_{i=1}^{n} (Y_i (\beta_0 + \beta_1 X_i))^2 \Rightarrow$ • $\hat{\beta}_1 = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^{n} (X_i - \bar{X})^2}$ • $\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$ • $\hat{\sigma}^2 = \frac{\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2}{n-2}$
- **Residuals**: $e_i = Y_i \hat{Y}_i$, where $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$

Simple Linear Regression II

Confidence/Prediction Intervals

Hypothesis Testing

Recap: Residual Analysis

- **Residual Analysis:** To check the appropriateness of SLR model
 - Is the regression function linear?
 - Do ε_i 's have constant variance σ^2 ?
 - Are ε_i's indepdent to each other?

We plot residuals e_i 's against X_i 's (or \hat{Y}_i 's) to assess these aspects

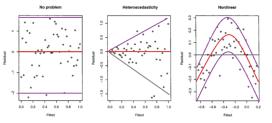
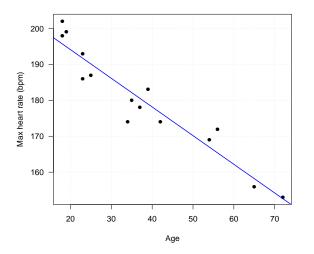


Figure: Figure courtesy of Faraway's Linear Models with R (2005, p. 59).

Confidence/Prediction Intervals

Hypothesis Testing

How (Un)certain We Are?



Confidence/Prediction Intervals

Hypothesis Testing

Analysis of Variance ANOVA) Approach to Regression

Can we formally quantify our estimation uncertainty? \Rightarrow We need additional (distributional) assumption on ε

Normal Error Regression Model

Recall

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

- Further assume $\varepsilon_i \sim N(0, \sigma^2) \Rightarrow Y_i \sim N(\beta_0 + \beta_1 X_i, \sigma^2)$
- With normality assumption, we can derive the sampling distribution of β̂₁ and β̂₀ ⇒

•
$$\frac{\hat{\beta}_1-\beta_1}{\hat{\sigma}_{\hat{\beta}_1}} \sim t_{n-2}, \quad \hat{\sigma}_{\hat{\beta}_1} = \frac{\hat{\sigma}}{\sqrt{\sum_{i=1}^n (X_i - \bar{X})^2}}$$

• $\frac{\hat{\beta}_0-\beta_0}{\hat{\sigma}_{\hat{\beta}_0}} \sim t_{n-2}, \quad \hat{\sigma}_{\hat{\beta}_0} = \hat{\sigma}\sqrt{\left(\frac{1}{n} + \frac{\bar{X}^2}{\sum_{i=1}^n (X_i - \bar{X})^2}\right)}$

where t_{n-2} denotes the Student's t distribution with n-2 degrees of freedom

Confidence/Prediction Intervals

Hypothesis Testing

Confidence Intervals

Recall β
_{1-β1}/σ
{β1} ~ t{n-2}, we use this fact to construct confidence intervals (CIs) for β₁:

$$\left[\hat{\beta}_1 - t_{\alpha/2,n-2}\hat{\sigma}_{\hat{\beta}_1},\hat{\beta}_1 + t_{\alpha/2,n-2}\hat{\sigma}_{\hat{\beta}_1}\right],$$

where α is the **confidence level** and $t_{\alpha/2,n-2}$ denotes the $1 - \alpha/2$ percentile of a student's t distribution with n - 2 degrees of freedom

• Similarly, we can construct CIs for β_0 :

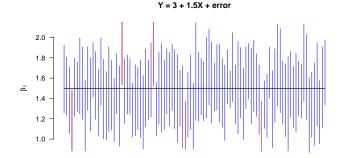
$$\left[\hat{\beta}_0 - t_{\alpha/2, n-2}\hat{\sigma}_{\hat{\beta}_0}, \hat{\beta}_0 + t_{\alpha/2, n-2}\hat{\sigma}_{\hat{\beta}_0}\right]$$

Confidence/Prediction Intervals

Hypothesis Testing

Understanding Confidence Intervals

- Suppose $Y = \beta_0 + \beta_1 X + \varepsilon$, where $\beta_0 = 3$, $\beta_1 = 1.5$ and $\sigma^2 \sim N(0, 1)$
- We take 100 random sample each with sample size 20
- We then construct the 95% CI for each random sample (⇒ 100 CIs)



Simple Linear Regression II

Confidence/Prediction Intervals

Hypothesis Testing

Interval Estimation of $E(Y_h)$

- We often interested in estimating the mean response for a particular value of predictor, say, X_h. Therefore we would like to construct CI for E[Y_h]
- We need sampling distribution of Ŷ_h to form CI:

•
$$\frac{\hat{Y}_h - Y_h}{\hat{\sigma}_{\hat{Y}_h}} \sim t_{n-2}, \quad \hat{\sigma}_{\hat{Y}_h} = \hat{\sigma} \sqrt{\left(\frac{1}{n} + \frac{(X_h - \bar{X})^2}{\sum_{i=1}^n (X_i - \bar{X})^2}\right)}$$

• Cl:
 $\left[\hat{Y}_h - t_{\alpha/2, n-2} \hat{\sigma}_{\hat{Y}_h}, \hat{Y}_h + t_{\alpha/2, n-2} \hat{\sigma}_{\hat{Y}_h}\right]$

Quiz: Use this formula to construct CI for β₀

Confidence/Prediction Intervals

Hypothesis Testing

Prediction Intervals

- Suppose we want to predict the response of a future observation given X = X_h
- We need to account for added variability as a new observation does not fall directly on the regression line (i.e., Y_{h(new)} = E[Y_h] + ε_h)

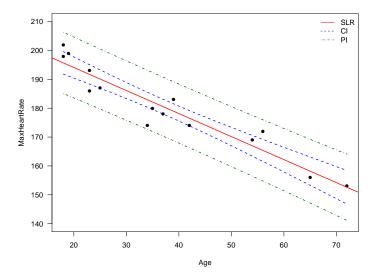
• Replace
$$\hat{\sigma}_{\hat{Y}_h}$$
 by $\hat{\sigma}_{\hat{Y}_{h(new)}} = \hat{\sigma} \sqrt{\left(1 + \frac{1}{n} + \frac{(X_h - \bar{X})^2}{\sum_{i=1}^n (X_i - \bar{X})^2}\right)}$ to construct Cls for $Y_{h(new)}$

Simple Linear Regression II

Confidence/Prediction Intervals

Hypothesis Testing

Confidence Intervals vs. Prediction Intervals



Simple Linear Regression II

Confidence/Prediction Intervals

Hypothesis Testing

Maximum Heart Rate vs. Age Revisited

The maximum heart rate MaxHeartRate (HR_{max}) of a person is often said to be related to age Age by the equation:

 $HR_{max} = 220 - Age.$

Suppose we have 15 people of varying ages are tested for their maximum heart rate (bpm)

Aae HBmar

- Construct the 95% CI for β_1
- Compute the estimate for mean MaxHeartRate given Age = 40 and construct the associated 90% CI
- Construct the prediction interval for a new observation given Age = 40

Confidence/Prediction Intervals

Hypothesis Testing

Maximum Heart Rate vs. Age: Hypothesis Test for Slope

()
$$H_0: \beta_1 = 0$$
 vs. $H_a: \beta_1 \neq 0$

- **2** Compute the **test statistic**: $t^* = \frac{\hat{\beta}_1 0}{\hat{\sigma}_{\hat{\beta}_1}} = \frac{-0.7977}{0.06996} = -11.40$
- Sompute **P-value**: $P(|t^*| \ge |t_{obs}|) = 3.85 \times 10^{-8}$
- If α and draw conclusion:

Reject H_0 at $\alpha = .05$ level, evidence suggests a negative linear relationship between MaxHeartRate and Age

Confidence/Prediction Intervals

Hypothesis Testing

Maximum Heart Rate vs. Age: Hypothesis Test for Intercept

()
$$H_0: \beta_0 = 0$$
 vs. $H_a: \beta_0 \neq 0$

- **2** Compute the **test statistic**: $t^* = \frac{\hat{\beta}_0 0}{\hat{\sigma}_{\beta_0}} = \frac{210.0485}{2.86694} = 73.27$
- Sompute **P-value**: $P(|t^*| \ge |t_{obs}|) \simeq 0$
- Or α and draw conclusion:

Reject H_0 at $\alpha = .05$ level, evidence suggests evidence suggests the intercept (the expected MaxHeartRate at age 0) is different from 0

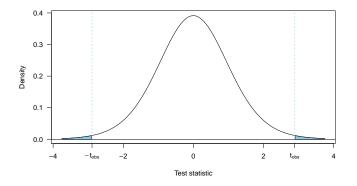
Confidence/Prediction Intervals

Hypothesis Testing

Hypothesis Tests for $\beta_{age} = -1$

$$H_0: \beta_{\mathsf{age}} = -1 \text{ vs. } H_a: \beta_{\mathsf{age}} \neq -1$$

Test Statistic:
$$\frac{\hat{\beta}_{age} - (-1)}{\hat{\sigma}_{\hat{\beta}_{age}}} = \frac{-0.79773 - (-1)}{0.06996} = 2.8912$$



P-value: $2 \times \mathbb{P}(t^* > 2.8912) = 0.013$, where $t^* \sim t_{df=13}$

Confidence/Prediction Intervals

Hypothesis Testing

Analysis of Variance (ANOVA) Approach to Regression

Partitioning Sums of Squares

• Total sums of squares in response

$$\mathsf{SST} = \sum_{i=1}^n (Y_i - \bar{Y})^2$$

• We can rewrite SST as

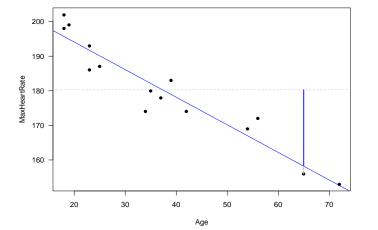
$$\sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2} = \sum_{i=1}^{n} (Y_{i} - \hat{Y}_{i} + \hat{Y}_{i} - \bar{Y})^{2}$$
$$= \underbrace{\sum_{i=1}^{n} (Y_{i} - \hat{Y}_{i})^{2}}_{\text{Error}} + \underbrace{\sum_{i=1}^{n} (\hat{Y}_{i} - \bar{Y})^{2}}_{\text{Model}}$$

Simple Linear Regression II

Confidence/Prediction Intervals

Hypothesis Testing

Partitioning Total Sums of Squares



Simple Linear Regression II

Confidence/Prediction Intervals

Hypothesis Testing

Total Sum of Squares: SST

 If we ignored the predictor X, the Y
 would be the best (linear unbiased) predictor

$$Y_i = \beta_0 + \varepsilon_i \tag{1}$$

- SST is the sum of squared deviations for this predictor (i.e., <u>Y</u>)
- The total mean square is SST/(n-1) and represents an unbiased estimate of σ² under the model (1).

Confidence/Prediction Intervals

Hypothesis Testing

Regression Sum of Squares: SSR

• SSR:
$$\sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2$$

• Degrees of freedom is 1 due to the inclusion of the slope, i.e.,

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i \tag{2}$$

• "Large" MSR = SSR/1 suggests a linear trend, because

$$\mathbb{E}[MSR] = \sigma^2 + \beta_1^2 \sum_{i=1}^n (X_i - \bar{X})^2$$

Confidence/Prediction Intervals

Hypothesis Testing

Error Sum of Squares: SSE

SSE is simply the sum of squared residuals

$$\mathsf{SSE} = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

- Degrees of freedom is n 2 (Why?)
- SSE large when |residuals| are "large" ⇒ Y_i's vary substantially around fitted regression line
- MSE = SSE/(n-2) and represents an unbiased estimate of σ² when taking X into account

Confidence/Prediction Intervals

Hypothesis Testing

ANOVA Table and F test

Source	df	SS	MS
Model	1	$SSR = \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2$	MSR = SSR/1
Error	n-2	$SSE = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$	MSE = SSE/(n-2)
Total	<i>n</i> – 1	$SST = \sum_{i=1}^n (Y_i - \overline{Y})^2$	

- **Goal:** To test $H_0: \beta_1 = 0$
- Test statistics $F^* = \frac{MSR}{MSE}$
- If β₁ = 0 then F^{*} should be near one ⇒ reject H₀ when F^{*}
 "large"
- We need sampling distribution of F^{*} under H₀ ⇒ F_{1,n-2}, where F_{d1,d2} denotes a F distribution with degrees of freedom d₁ and d₂

Confidence/Prediction Intervals

Hypothesis Testing

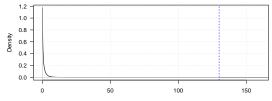
F Test: $H_0: \beta_1 = 0$ **vs.** $H_a: \beta_1 \neq 0$

fit <- lm(MaxHeartRate ~ Age)
anova(fit)
</pre>

Analysis of Variance Table

Response: MaxHeartRate Df Sum Sq Mean Sq F value Age 1 2724.50 2724.50 130.01 Residuals 13 272.43 20.96 Pr(>F) Age 3.848e-08 ***

Null distribution of F test statistic



Test statistic

Simple Linear Regression II

Confidence/Prediction Intervals

Hypothesis Testing

SLR: F-Test vs. T-test

ANOVA Table and F-Test

Analysis of Variance Table

Response: MaxHeartRate Df Sum Sq Mean Sq Age 1 2724.50 2724.50 Residuals 13 272.43 20.96 F value Pr(>F) Age 130.01 3.848e-08

Parameter Estimation and T-Test

Coefficients:

 Estimate Std. Error t value Pr(>Itl)

 (Intercept) 210.04846
 2.86694
 73.27
 < 2e-16</td>

 Age
 -0.79773
 0.06996
 -11.40
 3.85e-08

Confidence/Prediction

Hypothesis Testing

Summary

In this lecture, we learned

- Normal Error Regression Model and statistical inference for β_0 and β_1
- Confidence/Prediction Intervals & Hypothesis Testing
- ANOVA Approach to Regression

Next time we will talk about

- Orrelation (r) & Coefficient of Determination (R^2)
- Advanced topics in Regression Analysis

Simple Linear Regression II

Confidence/Prediction Intervals

Hypothesis Testing