Lecture 24 Simple Linear Regression III

Readings: IntroStat Chapter 11; OpenIntro Chapter 8
STAT 8010 Statistical Methods I June 20, 2023

Whitney Huang Clemson University

Agenda

Correlation and Simple Linear Regression

Advanced Topics in Regression Analysis
(1) Correlation and Simple Linear Regression
(2) Advanced Topics in Regression Analysis

Correlation and Simple Linear Regression

- Pearson Correlation: $r=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sqrt{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}}$
- $-1 \leq r \leq 1$ measures the strength of the linear relationship between Y and X
- We can show

$$
r=\hat{\beta}_{1} \sqrt{\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}},
$$

this implies

$$
\beta_{1}=0 \text { in } \operatorname{SLR} \Leftrightarrow \rho=0
$$

Coefficient of Determination R^{2}

- Defined as the proportion of total variation explained by SLR

$$
R^{2}=\frac{\sum_{i=1}^{n}\left(\hat{Y}_{i}-\bar{Y}\right)^{2}}{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}=\frac{\mathrm{SSR}}{\mathrm{SST}}=1-\frac{\mathrm{SSE}}{\mathrm{SST}}
$$

- We can show $r^{2}=R^{2}$:

$$
\begin{aligned}
r^{2} & =\left(\hat{\beta}_{1} \sqrt{\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}}\right)^{2} \\
& =\frac{\hat{\beta}_{1}^{2} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}} \\
& =\frac{\mathrm{SSR}}{\mathrm{SST}} \\
& =R^{2}
\end{aligned}
$$

Maximum Heart Rate vs. Age: r and R^{2}

> summary(fit)\$r.squared
[1] 0.9090967
> cor(Age, MaxHeartRate)
[1] -0.9534656

Interpretation:

There is a strong negative linear relationship between MaxHeartRate and Age. Furthermore, ~ 91\% of the variation in MaxHeartRate can be explained by Age.

SLR Model Remedies

\Rightarrow Nonlinear relationship

- Transform X
- Nonlinear regression

\Rightarrow Non-constant variance
- Transform Y
- Weighted least squares

Correlation and Simple Linear Regression

Extrapolation in SLR

Extrapolation beyond the range of the given data can lead to seriously biased estimates if the assumed relationship does not hold the region of extrapolation

Summary of SLR

- Model: $Y=\beta_{0}+\beta_{1} X+\varepsilon, \quad \varepsilon \stackrel{i . i . d .}{\sim} N\left(0, \sigma^{2}\right)$
- Estimation: Use the method of least squares to estimate the parameters $\left(\beta_{0}, \beta_{1}, \sigma^{2}\right)$
- Inference
- Hypothesis Testing
- Confidence/prediction Intervals
- ANOVA
- Model Diagnostics and Remedies

Correlation and Simple Linear Regression

Advanced Topics in Regression Analysis

Advanced Topics

Non-parametric Regression

$$
Y=f(x)+\varepsilon \Rightarrow \mathrm{E}[Y \mid x]=f(x),
$$

where $f(x)$ is a smooth function estimated from the data

Logistic Regression

Y : binary response with the "success" probability π

$$
\log \left(\frac{\pi}{1-\pi}\right)=\beta_{0}+\beta_{1} x .
$$

Correlation and Simp

- $\log \left(\frac{\pi}{1-\pi}\right)$: the log-odds or the logit
- $\pi(x)=\frac{e^{\beta_{0}+\beta_{1} x}}{1+e^{\beta_{0}+\beta_{1} x}} \in(0,1)$

Multiple Linear Regression

 predictors (x 's) and a response (Y) by fitting a linear equation to observed data:$$
y_{i}=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{p-1} x_{p-1}+\varepsilon_{i}, \quad \varepsilon_{i} \stackrel{i . i . d .}{\sim} \mathrm{N}\left(0, \sigma^{2}\right)
$$

Source: https://www.mathworks.com/help/stats/regress.html

New Topics:

- Model Selection
- Multicollinearity

Analysis of Covariance (ANCOVA)

$$
Y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{p-1} x_{p-1}+\varepsilon, \quad \varepsilon \sim \mathrm{N}\left(0, \sigma^{2}\right)
$$

$x_{1}, x_{2}, \cdots, x_{p-1}$ are the predictors.
ANCOVA is a statistical method used to handle situations where some of the predictors involve qualitative (categorical) variables

