Lecture 3 Exploratory Data Analysis II Readings: IntroStat Chapter 3; OpenIntro Chapter 2

STAT 8010 Statistical Methods I May 18, 2023

Summarizing Numerical Data

Visualizing two variables simultaneously

Whitney Huang Clemson University

Agenda

Exploratory Data Analysis II

Summarizing Numerical Data

Visualizing two variables simultaneously

Exploratory Data Analysis II

Summarizing Numerical Data

Visualizing two variables simultaneously

Summarizing the Spread of Numerical Variables

Measures of Spread

Exploratory Data Analysis II

Summarizing Numerical Data

Visualizing two variables simultaneously

• Measures: Range, Variance/Standard Deviation, Interquartile range (IQR)

Range

The range of a dataset is the difference between the largest and smallest values

Range = Largest Value – Smallest Value

- Compute the range of the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13
- Compute the range of the following list of values: 13, 18, 13, 14, 13, 16, 14, 210, 13

Question: Is Range a robust statistic?

Summarizing Numerical Data

Variance and Standard Deviation

- The sample standard deviation (variance), denoted by s (s²), is a measure of the amount of variation of data. s (s²) can be used as the estimate of the population standard deviation (varaince), denoted by σ (σ²)
- *s* is calculated in the following way:
 - Oalculate the sample mean \bar{X}
 - 2 Calculate the deviation (from the sample mean) for each observation (i.e., $X_i \overline{X}$, i = 1, ..., n)
 - Square each deviation and add them (i.e., $\sum_{i=1}^{n} (X_i \bar{X})^2$)
 - Divide by n-1 and take the square root, that is,

$$s = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n-1}}$$

Summarizing Numerical Data

Compute s of the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13

Compute s of the following list of values: 13, 18, 13, 14, 13, 16, 14, 210, 13

Question: Is standard deviation a robust statistic?

Summarizing Numerical Data

Interquartile range (IQR)

• $IQR = Q_3 - Q_1$, where Q_1 is the Lower Quartile (the median of the lower half of the data) and Q_3 is the Upper Quartile (the median of the upper half of the data)

• Compute the IQR of the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13

Compute the IQR of the following list of values: 13, 18, 13, 14, 13, 16, 14, 210, 13

Question: Is IQR a robust statistic?

Exploratory Data Analysis II

Summarizing Numerical Data

Exploratory Data Analysis II

Summarizing Numerical Data

Visualizing two variables simultaneously

Percentiles, Quartiles, and Boxplots

- The p_{th} percentile is a value such that at least p% of the data set is less than or equal to this value [An Example]
- Calculation of percentiles using the indexing method:
 - Sort the set of numbers in an increasing order

Summarizing Numerical Data

- The p_{th} percentile is a value such that at least p% of the data set is less than or equal to this value [An Example]
- Calculation of percentiles using the indexing method:
 - Sort the set of numbers in an increasing order
 - **②** For the p_{th} percentile, compute the index $i = \frac{np}{100}$ where *n* is the sample size

• Quartiles:

Summarizing Numerical Data

- The p_{th} percentile is a value such that at least p% of the data set is less than or equal to this value [An Example]
- Calculation of percentiles using the indexing method:
 - Sort the set of numbers in an increasing order
 - **②** For the p_{th} percentile, compute the index $i = \frac{np}{100}$ where *n* is the sample size
 - If i is an integer then p_{th} percentile is the average of i_{th} value and (i + 1)_{th} value, otherwise take the (i + 1)_{th} value
- Quartiles:

Summarizing Numerical Data

- The p_{th} percentile is a value such that at least p% of the data set is less than or equal to this value [An Example]
- Calculation of percentiles using the indexing method:
 - Sort the set of numbers in an increasing order
 - **②** For the p_{th} percentile, compute the index $i = \frac{np}{100}$ where *n* is the sample size
 - If i is an integer then pth percentile is the average of ith value and (i + 1)th value, otherwise take the (i + 1)th value
- Quartiles:
 - Q1: first quartile $(25_{th} \text{ percentile})$

Summarizing Numerical Data

- The p_{th} percentile is a value such that at least p% of the data set is less than or equal to this value [An Example]
- Calculation of percentiles using the indexing method:
 - Sort the set of numbers in an increasing order
 - **②** For the p_{th} percentile, compute the index $i = \frac{np}{100}$ where *n* is the sample size
 - If i is an integer then pth percentile is the average of ith value and (i + 1)th value, otherwise take the (i + 1)th value
- Quartiles:
 - Q1: first quartile (25th percentile)
 - M (Q2): median (second quartile, 50th percentile)

Summarizing Numerical Data

- The p_{th} percentile is a value such that at least p% of the data set is less than or equal to this value [An Example]
- Calculation of percentiles using the indexing method:
 - Sort the set of numbers in an increasing order
 - **②** For the p_{th} percentile, compute the index $i = \frac{np}{100}$ where *n* is the sample size
 - If i is an integer then p_{th} percentile is the average of i_{th} value and (i + 1)_{th} value, otherwise take the (i + 1)_{th} value
- Quartiles:
 - Q1: first quartile (25th percentile)
 - M (Q2): median (second quartile, 50th percentile)
 - Q3: third quartile (75_{th} percentile)

Summarizing Numerical Data

- The p_{th} percentile is a value such that at least p% of the data set is less than or equal to this value [An Example]
- Calculation of percentiles using the indexing method:
 - Sort the set of numbers in an increasing order
 - **②** For the p_{th} percentile, compute the index $i = \frac{np}{100}$ where *n* is the sample size
 - If i is an integer then pth percentile is the average of ith value and (i + 1)th value, otherwise take the (i + 1)th value
- Quartiles:
 - Q1: first quartile (25th percentile)
 - M (Q2): median (second quartile, 50th percentile)
 - Q3: third quartile (75_{th} percentile)
 - Interquartile range or IQR: Q3 Q1

Summarizing Numerical Data

Exploratory Data Analysis II

Summarizing Numerical Data

Visualizing two variables simultaneously

Find Q_1, M, Q_3 and IQR of the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13 using the indexing method

Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 21

Find Q_1, M, Q_3 and IQR of the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13 using the indexing method

- Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 21
- Find the sample size n and compute the indices for p = 25, 50, 75

Analysis II

Summarizing Numerical Data

Find Q_1, M, Q_3 and IQR of the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13 using the indexing method

- Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 21
- Find the sample size n and compute the indices for p = 25, 50, 75
- $0 n = 9 \Rightarrow$ the indices are $3, 5, 7 \Rightarrow Q_1 = 13, M = 14, Q_3 = 16$

Summarizing Numerical Data

Find Q_1, M, Q_3 and IQR of the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13 using the indexing method

- Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 21
- Find the sample size n and compute the indices for p = 25, 50, 75
- $0 n = 9 \Rightarrow$ the indices are $3, 5, 7 \Rightarrow Q_1 = 13, M = 14, Q_3 = 16$

Q
$$IQR = Q_3 - Q_1 = 16 - 13 = 3$$

xploratory Data Analysis II

Summarizing Numerical Data

Steps to Making a Boxplot

- Find Q_1 , M, Q_3 and draw a box from Q_1 to Q_3 . Add a vertical line inside the box at M
- Compute the value of Lower Fence (LF) = Q1 − 1.5IQR and the Upper Fence (UF) = Q3 + 1.5IQR. Find the largest value ≤ UF and the smallest value ≥ LF. Draw whiskers go from Q1, Q3 to these two values
- Plot the individual outlier(s) (i.e., the values either > UF or < LF)</p>

Summarizing Numerical Data

Bopxplot

• Ordered data values: 13, 13, 13, 13, 14, 14, 16, 18, 21

Summarizing Numerical Data

Bopxplot

- Ordered data values: 13, 13, 13, 13, 14, 14, 16, 18, 21
- IQR $16 13 = 3 \Rightarrow LF = 13 1.5 \times 3 = 8.5$; UF = $16 + 1.5 \times 3 = 20.5$

Summarizing Numerical Data

Exploratory Data Analysis II

Summarizing Numerical Data

Visualizing two variables simultaneously

Suppose we have the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13, 9, 27, 18, 25, 20, 6

• Find the 35th percentile

Exploratory Data Analysis II

Summarizing Numerical Data

Visualizing two variables simultaneously

Suppose we have the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13, 9, 27, 18, 25, 20, 6

Find the 35th percentile

Sort the data: 6,9,13,13,13,13,14,14,16,18,18,20,21,25,27

Exploratory Data Analysis II

Summarizing Numerical Data

Visualizing two variables simultaneously

Suppose we have the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13, 9, 27, 18, 25, 20, 6

Find the 35th percentile

Sort the data: 6,9,13,13,13,13,14,14,16,18,18,20,21,25,27

Compute the index value i = 35×15/100 = 5.25 ⇒ the 35th percentile is 13

Exploratory Data Analysis II

Summarizing Numerical Data

Visualizing two variables simultaneously

Suppose we have the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13, 9, 27, 18, 25, 20, 6

Find the 35th percentile

Sort the data: 6,9,13,13,13,13,14,14,16,18,18,20,21,25,27

- 2 Compute the index value i = 35×15/100 = 5.25 ⇒ the 35th percentile is 13
- Find the 65th percentile

Exploratory Data Analysis II

Summarizing Numerical Data

Visualizing two variables simultaneously

Suppose we have the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13, 9, 27, 18, 25, 20, 6

Find the 35th percentile

Sort the data: 6,9,13,13,13,13,14,14,16,18,18,20,21,25,27

Compute the index value $i = \frac{35 \times 15}{100} = 5.25 \Rightarrow$ the 35th percentile is 13

• Find the 65th percentile

Sort the data: 6,9,13,13,13,13,14,14,16,18,18,20,21,25,27

Exploratory Data Analysis II

Summarizing Numerical Data

Visualizing two variables simultaneously

Suppose we have the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13, 9, 27, 18, 25, 20, 6

Find the 35th percentile

Sort the data: 6,9,13,13,13,13,14,14,16,18,18,20,21,25,27

Compute the index value $i = \frac{35 \times 15}{100} = 5.25 \Rightarrow$ the 35th percentile is 13

- Find the 65th percentile
 - Sort the data: 6,9,13,13,13,13,14,14,16,18,18,20,21,25,27
 - Ocompute the index value i = ^{65×15}/₁₀₀ = 9.75 ⇒ the 65th percentile is 18

Exploratory Data Analysis II

Summarizing Numerical Data

Visualizing two variables simultaneously

Example: O'Hare Airport Flight Data

carrier	origin
UA	EWR
AA	LGA
AA	LGA
AA	LGA
UA	LGA
UA	EWR

Summarizing Numerical Data

Visualizing two variables simultaneously

In this example, we have two categorical variables, carrier and origin, respectively. How to summa-rize/visualize this dataset?

ORD Flight Data Cont'd

	EWR	LGA	EWR	LGA
AA	0	5694	AA 0.00	0.45
UA	3822	3162	UA 0.30	0.25

R S

I V E

Ν

variables simultaneously

Origin

ORD Fligts Data Cont'd

rrier	origin	arr_delay
UA	EWR	12
AA	LGA	8
AA	LGA	14
AA	LGA	4
UA	LGA	20
UA	EWR	21

Summarizing Numerical Data

Visualizing two variables simultaneously

In this example, we have two categorical variables, carrier, origin and a numerical variable arr_delay, respectively. How to visualize, for example, arr_delay vs. carrier?

ORD Example: Arrival Delay vs. Air Carrier

Arrival Delay vs. Carrier

Exploratory Data Analysis II

Summarizing Numerical Data

Example: Max Heart Rate and Age

Suppose we have 15 people of varying ages are tested for their maximum heart rate (MHR)

Age	18	23	25	35	65	54	34	56	72	19	23	42	18	39	37
MHR	202	186	187	180	156	169	174	172	153	199	193	174	198	183	178

- How many variables do we have in this data set? What are the variable types?
- How to summarize these variables?

Summarizing Numerical Data

Scatterplot

A scatterplot is a useful tool to graphically display the relationship between two numerical variables. Each dot on the scatterplot represents one observation from the data

Age

Summarizing Numerical Data

Summary

In this lecture, we learned

- How to summarize numerical variable
- How to visualize two variables simultaneously

In next lecture we will learn

- How to visualize time series, cross-sectional, spatio-temporal data sets
- R session for EDA

Summarizing Numerical Data