Lecture 3
 Exploratory Data Analysis II

Readings: IntroStat Chapter 3; OpenIntro Chapter 2

STAT 8010 Statistical Methods I May 18, 2023

Whitney Huang Clemson University

Agenda

(2) Visualizing two variables simultaneously

Summarizing the Spread of Numerical Variables

Measures of Spread

- Measures: Range, Variance/Standard Deviation, Interquartile range (IQR)

The range of a dataset is the difference between the largest and smallest values

```
Range = Largest Value - Smallest Value
```

- Compute the range of the following list of values: 13,18 , $13,14,13,16,14,21,13$
- Compute the range of the following list of values: 13,18 , $13,14,13,16,14,210,13$

Question: Is Range a robust statistic?

- The sample standard deviation (variance), denoted by s $\left(s^{2}\right)$, is a measure of the amount of variation of data. $s\left(s^{2}\right)$ can be used as the estimate of the population standard deviation (varaince), denoted by $\sigma\left(\sigma^{2}\right)$
- s is calculated in the following way:
- Calculate the sample mean \bar{X}
(2) Calculate the deviation (from the sample mean) for each observation (i.e., $X_{i}-\bar{X}, \quad i=1, \cdots, n$)
© Square each deviation and add them (i.e., $\left.\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}\right)$
(1) Divide by $n-1$ and take the square root, that is,

$$
s=\sqrt{\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n-1}}
$$

Example

- Compute s of the following list of values: $13,18,13,14$, $13,16,14,21,13$
- Compute s of the following list of values: $13,18,13,14$, $13,16,14,210,13$

Question: Is standard deviation a robust statistic?

Interquartile range (IQR)

- IQR $=Q_{3}-Q_{1}$, where Q_{1} is the Lower Quartile (the median of the lower half of the data) and Q_{3} is the Upper Quartile (the median of the upper half of the data)
- Compute the IQR of the following list of values: $13,18,13$, $14,13,16,14,21,13$
- Compute the IQR of the following list of values: $13,18,13$, $14,13,16,14,210,13$

Question: Is IQR a robust statistic?

Percentiles, Quartiles, and Boxplots

- The $p_{\text {th }}$ percentile is a value such that at least $p \%$ of the data set is less than or equal to this value [An Example]
- Calculation of percentiles using the indexing method:
- Sort the set of numbers in an increasing order
- Quartiles:
- The $p_{\text {th }}$ percentile is a value such that at least $p \%$ of the data set is less than or equal to this value [An Example]
- Calculation of percentiles using the indexing method:
- Sort the set of numbers in an increasing order
(2) For the $p_{\text {th }}$ percentile, compute the index $i=\frac{n p}{100}$ where n is the sample size
- Quartiles:
- The $p_{\text {th }}$ percentile is a value such that at least $p \%$ of the data set is less than or equal to this value [An Example]
- Calculation of percentiles using the indexing method:
- Sort the set of numbers in an increasing order
(2) For the $p_{\text {th }}$ percentile, compute the index $i=\frac{n p}{100}$ where n is the sample size
(O) If i is an integer then $p_{t h}$ percentile is the average of $i_{t h}$ value and $(i+1)_{\mathrm{th}}$ value, otherwise take the $(i+1)_{\mathrm{th}}$ value
- Quartiles:
- The $p_{\text {th }}$ percentile is a value such that at least $p \%$ of the data set is less than or equal to this value [An Example]
- Calculation of percentiles using the indexing method:
- Sort the set of numbers in an increasing order
(2) For the $p_{\text {th }}$ percentile, compute the index $i=\frac{n p}{100}$ where n is the sample size
(0. If i is an integer then $p_{t h}$ percentile is the average of $i_{\text {th }}$ value and $(i+1)_{\mathrm{th}}$ value, otherwise take the $(i+1)_{\mathrm{th}}$ value
- Quartiles:
© Q1: first quartile ($25_{\text {th }}$ percentile)
- The $p_{\text {th }}$ percentile is a value such that at least $p \%$ of the data set is less than or equal to this value [An Example]
- Calculation of percentiles using the indexing method:
- Sort the set of numbers in an increasing order
(2) For the $p_{\text {th }}$ percentile, compute the index $i=\frac{n p}{100}$ where n is the sample size
(O) If i is an integer then $p_{t h}$ percentile is the average of $i_{t h}$ value and $(i+1)_{\mathrm{th}}$ value, otherwise take the $(i+1)_{\mathrm{th}}$ value
- Quartiles:
(1) Q1: first quartile ($25_{\text {th }}$ percentile)
(ㄹ) $M(Q 2)$: median (second quartile, $50_{\text {th }}$ percentile)
- The $p_{\text {th }}$ percentile is a value such that at least $p \%$ of the data set is less than or equal to this value [An Example]
- Calculation of percentiles using the indexing method:
- Sort the set of numbers in an increasing order
(2) For the $p_{\text {th }}$ percentile, compute the index $i=\frac{n p}{100}$ where n is the sample size
(O) If i is an integer then $p_{t h}$ percentile is the average of $i_{t h}$ value and $(i+1)_{\mathrm{th}}$ value, otherwise take the $(i+1)_{\mathrm{th}}$ value
- Quartiles:
- Q1: first quartile ($25_{\text {th }}$ percentile)
(3) $M(Q 2)$: median (second quartile, $50_{\text {th }}$ percentile)
(3) Q3: third quartile ($75_{\text {th }}$ percentile)
- The $p_{\text {th }}$ percentile is a value such that at least $p \%$ of the data set is less than or equal to this value [An Example]
- Calculation of percentiles using the indexing method:
- Sort the set of numbers in an increasing order
(2) For the $p_{\text {th }}$ percentile, compute the index $i=\frac{n p}{100}$ where n is the sample size
(O) If i is an integer then $p_{t h}$ percentile is the average of $i_{t h}$ value and $(i+1)_{\mathrm{th}}$ value, otherwise take the $(i+1)_{\mathrm{th}}$ value
- Quartiles:
- Q1: first quartile ($25_{\text {th }}$ percentile)
(3) $M(Q 2)$: median (second quartile, $50_{\text {th }}$ percentile)
(3) Q3: third quartile ($75_{\text {th }}$ percentile)
© Interquartile range or IQR: Q3-Q1

Example

Find Q_{1}, M, Q_{3} and IQR of the following list of values: 13, 18, $13,14,13,16,14,21,13$ using the indexing method

O Order the data first: $13,13,13,13,14,14,16,18,21$

Example

Find Q_{1}, M, Q_{3} and IQR of the following list of values: 13,18 , $13,14,13,16,14,21,13$ using the indexing method

O Order the data first: $13,13,13,13,14,14,16,18,21$
(2) Find the sample size n and compute the indices for $p=25,50,75$

Find Q_{1}, M, Q_{3} and IQR of the following list of values: 13, 18, $13,14,13,16,14,21,13$ using the indexing method

O Order the data first: $13,13,13,13,14,14,16,18,21$
(2) Find the sample size n and compute the indices for $p=25,50,75$
(ㅇ) $n=9 \Rightarrow$ the indices are $3,5,7 \Rightarrow Q_{1}=13, M=14, Q_{3}=16$

Find Q_{1}, M, Q_{3} and IQR of the following list of values: 13, 18, $13,14,13,16,14,21,13$ using the indexing method

O Order the data first: $13,13,13,13,14,14,16,18,21$
(2) Find the sample size n and compute the indices for $p=25,50,75$
(C) $n=9 \Rightarrow$ the indices are $3,5,7 \Rightarrow Q_{1}=13, M=14, Q_{3}=16$
(ㄱ) $\operatorname{IQR}=Q_{3}-Q_{1}=16-13=3$

Steps to Making a Boxplot

- Find Q_{1}, M, Q_{3} and draw a box from Q_{1} to Q_{3}. Add a vertical line inside the box at M
© Compute the value of Lower Fence $(\mathrm{LF})=Q 1-1.5 \mathrm{IQR}$ and the Upper Fence (UF) $=Q 3+1.5 \mathrm{IQR}$. Find the largest value $\leq \mathrm{UF}$ and the smallest value $\geq \mathrm{LF}$. Draw whiskers go from Q_{1}, Q_{3} to these two values
- Plot the individual outlier(s) (i.e., the values either > UF or < LF)

Bopxplot

- Ordered data values: $13,13,13,13,14,14,16,18,21$

Bopxplot

- Ordered data values: $13,13,13,13,14,14,16,18,21$
- IQR $16-13=3 \Rightarrow L F=13-1.5 \times 3=8.5$; UF = $16+1.5 \times 3=20.5$

Example

Suppose we have the following list of values: $13,18,13,14$, $13,16,14,21,13,9,27,18,25,20,6$

- Find the 35 th percentile

Example

Suppose we have the following list of values: $13,18,13,14$, $13,16,14,21,13,9,27,18,25,20,6$

- Find the 35 th percentile

O Sort the data: $6,9,13,13,13,13,14,14,16,18,18,20,21,25,27$

Example

Suppose we have the following list of values: $13,18,13,14$, $13,16,14,21,13,9,27,18,25,20,6$

- Find the 35 th percentile

O Sort the data: $6,9,13,13,13,13,14,14,16,18,18,20,21,25,27$
(2) Compute the index value $i=\frac{35 \times 15}{100}=5.25 \Rightarrow$ the 35 th percentile is 13

Example

Suppose we have the following list of values: $13,18,13,14$, $13,16,14,21,13,9,27,18,25,20,6$

- Find the 35th percentile

O Sort the data: $6,9,13,13,13,13,14,14,16,18,18,20,21,25,27$
(2) Compute the index value $i=\frac{35 \times 15}{100}=5.25 \Rightarrow$ the 35 th percentile is 13

- Find the 65th percentile

Example

Suppose we have the following list of values: $13,18,13,14$, $13,16,14,21,13,9,27,18,25,20,6$

- Find the 35 th percentile

O Sort the data: $6,9,13,13,13,13,14,14,16,18,18,20,21,25,27$
(2) Compute the index value $i=\frac{35 \times 15}{100}=5.25 \Rightarrow$ the 35 th percentile is 13

- Find the 65th percentile

O Sort the data: $6,9,13,13,13,13,14,14,16,18,18,20,21,25,27$

Example

Suppose we have the following list of values: $13,18,13,14$, $13,16,14,21,13,9,27,18,25,20,6$

- Find the 35 th percentile

O Sort the data: $6,9,13,13,13,13,14,14,16,18,18,20,21,25,27$
(c) Compute the index value $i=\frac{35 \times 15}{100}=5.25 \Rightarrow$ the 35 th percentile is 13

- Find the 65th percentile

O Sort the data: $6,9,13,13,13,13,14,14,16,18,18,20,21,25,27$
(2) Compute the index value $i=\frac{65 \times 15}{100}=9.75 \Rightarrow$ the 65 th percentile is 18

Summarizing
Numerical Data
Visualizing two variables simultaneously

Visualizing two variables simultaneously

Example: O'Hare Airport Flight Data

carrier origin

	carrier	origin
1	UA	EWR
2	AA	LGA
3	AA	LGA
4	AA	LGA
5	UA	LGA
6	UA	EWR

Summarizing
Visualizing two
variables
simultaneously

In this example, we have two categorical variables, carrier and origin, respectively. How to summarize/visualize this dataset?

ORD Flight Data Cont'd

EWR LGA
AA 05694
UA 38223162

Origin

EWR LGA

$$
\begin{array}{lll}
\text { AA } & 0.00 & 0.45 \\
\text { UA } & 0.30 & 0.25
\end{array}
$$

Summarizing

Visualizing two
variables
simultaneously

ORD Fligts Data Cont'd

carrier origin arr_delay

UA	EWR	12
AA	LGA	8
AA	LGA	14
AA	LGA	4
UA	LGA	20
UA	EWR	21

In this example, we have two categorical variables, carrier, origin and a numerical variable arr_delay, respectively. How to visualize, for example, arr_delay vs. carrier?

ORD Example: Arrival Delay vs. Air Carrier

Arrival Delay vs. Carrier

Visualizing two variables simultaneously

Example: Max Heart Rate and Age

Suppose we have 15 people of varying ages are tested for their maximum heart rate (MHR)

Age	18	23	25	35	65	54	34	56	72	19	23	42	18	39	37
MHR	202	186	187	180	156	169	174	172	153	199	193	174	198	183	178

- How many variables do we have in this data set? What are the variable types?
- How to summarize these variables?

Scatterplot

A scatterplot is a useful tool to graphically display the relationship between two numerical variables. Each dot on the scatterplot represents one observation from the data

Summary

In this lecture, we learned

- How to summarize numerical variable
- How to visualize two variables simultaneously

In next lecture we will learn

- How to visualize time series, cross-sectional, spatio-temporal data sets
- R session for EDA

