Lecture 6 Probability II

Readings: IntroStat Chapter 4; OpenIntro Chapter 3

STAT 8010 Statistical Methods I May 23, 2023

Whitney Huang Clemson University
(1) Complement Rule and General Addition Rule

2 Independence and Conditional Probability

3 Law of Total Probability

4 Bayes' Rule

Independence and
Conditional Probability

Complement Rule and General Addition Rule

Complement

Complement Rule and General Addition Rule

Independence and Conditional Probability I sum of Tatal Drohakility Bayes' Rule

Complement Rule

- By the definition of complement

$$
A \cup A^{c}=\Omega
$$

Complement Rule and General Addition Rule

Independence and

 Conditional Probabilit
Complement Rule

- By the definition of complement

$$
A \cup A^{c}=\Omega
$$

(2) Apply the probability operator

$$
\mathbb{P}\left(A \cup A^{c}\right)=\mathbb{P}(\Omega)=1
$$

Complement Rule

- By the definition of complement

$$
A \cup A^{c}=\Omega
$$

(2) Apply the probability operator

$$
\mathbb{P}\left(A \cup A^{c}\right)=\mathbb{P}(\Omega)=1
$$

(3) Since A and A^{c} are mutually exclusive

$$
\mathbb{P}\left(A \cup A^{c}\right)=\mathbb{P}(A)+\mathbb{P}\left(A^{c}\right)
$$

Complement Rule

- By the definition of complement

$$
A \cup A^{c}=\Omega
$$

(2) Apply the probability operator

$$
\mathbb{P}\left(A \cup A^{c}\right)=\mathbb{P}(\Omega)=1
$$

(3) Since A and A^{c} are mutually exclusive

$$
\mathbb{P}\left(A \cup A^{c}\right)=\mathbb{P}(A)+\mathbb{P}\left(A^{c}\right)
$$

(c) Hence we get $\mathbb{P}(A)=1-\mathbb{P}\left(A^{c}\right)$

Example

Suppose we rolled a fair, six-sided die 10 times. Let T be the event that we roll at least 1 three. If one were to calculate T you would need to find the probability of 1 three, 2 threes, \cdots, and 10 threes and add them all up. However, you can use the complement rule to calculate $\mathbb{P}(T)$

Solution.

Let X be the times that we rolled a 3, then
$\mathbb{P}(T)=\mathbb{P}(X \geq 1)=\underbrace{\mathbb{P}(X=1)+\mathbb{P}(X=2)+\cdots+\mathbb{P}(X=10)}_{\text {need to compute } 10 \text { probabilities }}$

Suppose we rolled a fair, six-sided die 10 times. Let T be the event that we roll at least 1 three. If one were to calculate T you would need to find the probability of 1 three, 2 threes, \cdots, and 10 threes and add them all up. However, you can use the complement rule to calculate $\mathbb{P}(T)$

Solution.

Let X be the times that we rolled a 3, then

$$
\mathbb{P}(T)=\mathbb{P}(X \geq 1)=\underbrace{\mathbb{P}(X=1)+\mathbb{P}(X=2)+\cdots+\mathbb{P}(X=10)}_{\text {need to compute } 10 \text { probabilities }}
$$

If we apply the complement rule
$\mathbb{P}(T)=1-\mathbb{P}\left(T^{c}\right)=1-\mathbb{P}(X=0)$

Venn Diagram

A Venn diagram is a diagram that shows all possible logical relations between a finite collection of events.

General Addition Rule

The general addition rule is a way of finding the probability of a union of 2 events. It is $\mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A \cap B)$

VENN DIAGRAM!

Complement Rule and General Addition Rule

Three of the major commercial computer operating systems are Windows, Mac OS, and Red Hat Linux Enterprise. A Computer Science professor selects 50 of her students and asks which of these three operating systems they use. The results for the 50 students are summarized below.

- 30 students use Windows
- 16 students use at least two of the operating systems
- 9 students use all three operating systems
- 18 students use Mac OS
- 46 students use at least one of the operating systems
- 11 students use both Windows and Linux
- 11 students use both Windows and Mac OS

Example cont'd

Complement Rule and General Addition Rule

Independence and Conditional Probabilit Law of Total Probability Bayes' Rule

Complement Rule and General Addition Rule

Independence and Conditional Probability

Independence and Conditional Probability

Independence: A Motivating Example

Example

You toss a fair coin and it comes up "Heads" three times. What is the chance that the next toss will also be a "Head"?

Independence and Conditional Probability

Conditional Probability

Let A and B be events. The probability that event B occurs given (knowing) that event A occurs is called a conditional probability and is denoted by $P(B \mid A)$. The formula of conditional probability is

$$
P(B \mid A)=\frac{P(B \cap A)}{P(A)}
$$

Independent events

Suppose $P(A)>0, P(B)>0$. We say that event B is independent of event A if the occurrence of event A does not affect the probability that event B occurs.

$$
P(B \mid A)=P(B) \Rightarrow P(B \cap A)=P(B) P(A)
$$

Law of Partitions \& Multiplication Rule

Law of partitions

Let $A_{1}, A_{2}, \cdots, A_{k}$ form a partition of Ω. Then, for all events B,

$$
\mathbb{P}(B)=\sum_{i=1}^{k} \mathbb{P}\left(A_{i} \cap B\right)
$$

Multiplication rule

- 2 events:

$$
\mathbb{P}(B \cap A)=\mathbb{P}(A) \times \mathbb{P}(B \mid A)=\mathbb{P}(B) \times \mathbb{P}(A \mid B)
$$

- More than 2 events:

$$
\begin{aligned}
\mathbb{P}\left(\cap_{i=1}^{n} A_{i}\right) & =\mathbb{P}\left(A_{1}\right) \times \mathbb{P}\left(A_{2} \mid A_{1}\right) \times \mathbb{P}\left(A_{3} \mid A_{1} \cap A_{2}\right) \\
& \times \cdots \times \mathbb{P}\left(A_{n} \mid A_{n-1} \cap \cdots \cap A_{1}\right)
\end{aligned}
$$

Law of Total Probability

Let $A_{1}, A_{2}, \cdots, A_{k}$ form a partition of Ω. Then, for all events B,

$$
\begin{aligned}
\mathbb{P}(B) & =\underbrace{\sum_{i=1}^{k} \mathbb{P}\left(A_{i} \cap B\right)}_{\text {Law of partitions }} \\
& =\underbrace{\sum_{i=1}^{k} \mathbb{P}\left(B \mid A_{i}\right) \times \mathbb{P}\left(A_{i}\right)}_{\text {Multiplication rule }}
\end{aligned}
$$

Suppose that two factories supply light bulbs to the market. Factory X's bulbs work for over 5000 hours in 99% of cases, whereas factory Y's bulbs work for over 5000 hours in 95% of cases. It is known that factory X supplies 60% of the total bulbs available and Y supplies 40% of the total bulbs available. What is the chance that a purchased bulb will work for longer than 5000 hours?

The Monty Hall Problem

There was an old television show called Let's Make a Deal, whose original host was named Monty Hall. The set-up is as follows. You are on a game show and you are given the choice of three doors. Behind one door is a car, behind the others are goats. You pick a door, and the host, who knows what is behind the doors, opens another door (not your pick) which has a goat behind it. Then he asks you if you want to change your original pick. The question we ask you is, "Is it to your advantage to switch your choice?"

The Monty Hall Problem

The Monty Hall Problem Solution

Complement Rule and
General Addition Rule
Independence and
Conditional Probability
I aw of Thtal Prohahility
Bayes' Rule

Bayes' Rule

General form

$$
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(B \mid A) \mathbb{P}(A)}{\mathbb{P}(B)}
$$

Let $A_{1}, A_{2}, \cdots, A_{k}$ form a partition of the sample space. Then for every event B in the sample space,

$$
\mathbb{P}\left(A_{j} \mid B\right)=\frac{\mathbb{P}\left(B \mid A_{j}\right) \times \mathbb{P}\left(A_{j}\right)}{\sum_{i=1}^{k} \mathbb{P}\left(B \mid A_{i}\right) \times \mathbb{P}\left(A_{i}\right)}, j=1,2, \cdots, k
$$

Example

Let us assume that a specific disease is only present in 5 out of every 1,000 people. Suppose that the test for the disease is accurate 99% of the time a person has the disease and 95% of the time that a person lacks the disease. What is the probability that the person has the disease given that they tested positive?

Solution.

Example

Let us assume that a specific disease is only present in 5 out of every 1,000 people. Suppose that the test for the disease is accurate 99% of the time a person has the disease and 95% of the time that a person lacks the disease. What is the probability that the person has the disease given that they tested positive?

Solution.

$\mathbb{P}(D \mid+)=\frac{\mathbb{P}(D \cap+)}{\mathbb{P}(+)}=\frac{.005 \times .99}{.005 \times .99+.995 \times .05}=\frac{.00495}{.0547}=.0905$

Example

Let us assume that a specific disease is only present in 5 out of every 1,000 people. Suppose that the test for the disease is accurate 99% of the time a person has the disease and 95% of the time that a person lacks the disease. What is the probability that the person has the disease given that they tested positive?

Solution.

$\mathbb{P}(D \mid+)=\frac{\mathbb{P}(D \cap+)}{\mathbb{P}(+)}=\frac{.005 \times .99}{.005 \times .99+.995 \times .05}=\frac{.00495}{.0547}=.0905$

The reason we get such a surprising result is because the disease is so rare that the number of false positives greatly outnumbers the people who truly have the disease.

Review of Probability (we learned so far)

Basic Concepts:

Complement Rule and
General Addition Rule
Independence and Conditional Probability

Law of Total Probahility
Bayes' Rule

Review of Probability (we learned so far)

Basic Concepts:

- Random Experiment, Sample Space, Outcome, Event

Review of Probability (we learned so far)

Basic Concepts:

- Random Experiment, Sample Space, Outcome, Event

Review of Probability (we learned so far)

Basic Concepts:

- Random Experiment, Sample Space, Outcome, Event
- Frequentist Interpretation of Probability and Equally Likely Framework

Review of Probability (we learned so far)

Basic Concepts:

- Random Experiment, Sample Space, Outcome, Event
- Frequentist Interpretation of Probability and Equally Likely Framework

Review of Probability (we learned so far)

Basic Concepts:

- Random Experiment, Sample Space, Outcome, Event
- Frequentist Interpretation of Probability and Equally Likely Framework
- Union and Intersection, Mutually Exclusive, Exhaustive, Partition

Review of Probability (we learned so far)

Basic Concepts:

- Random Experiment, Sample Space, Outcome, Event
- Frequentist Interpretation of Probability and Equally Likely Framework
- Union and Intersection, Mutually Exclusive, Exhaustive, Partition

Review of Probability (we learned so far)

Basic Concepts:

- Random Experiment, Sample Space, Outcome, Event
- Frequentist Interpretation of Probability and Equally Likely Framework
- Union and Intersection, Mutually Exclusive, Exhaustive, Partition
- Venn Diagram

Review of Probability (we learned so far)

Basic Concepts:

- Random Experiment, Sample Space, Outcome, Event
- Frequentist Interpretation of Probability and Equally Likely Framework
- Union and Intersection, Mutually Exclusive, Exhaustive, Partition
- Venn Diagram

Review of Probability (we learned so far)

Basic Concepts:

- Random Experiment, Sample Space, Outcome, Event
- Frequentist Interpretation of Probability and Equally Likely Framework
- Union and Intersection, Mutually Exclusive, Exhaustive, Partition
- Venn Diagram
- Independence and Conditional Probability

Review: Probability Rules

- $0 \leq \mathbb{P}(A) \leq 1$ for any event $A, \mathbb{P}(\varnothing)=0, \mathbb{P}(\Omega)=1$

Complement Rule and
General Addition Rule
Independence and Conditional Probability Law of Total Probability Bayes' Rule

Review: Probability Rules

- $0 \leq \mathbb{P}(A) \leq 1$ for any event $A, \mathbb{P}(\varnothing)=0, \mathbb{P}(\Omega)=1$

Complement Rule and
General Addition Rule
Independence and Conditional Probability Law of Total Probability Bayes' Rule

Review: Probability Rules

- $0 \leq \mathbb{P}(A) \leq 1$ for any event $A, \mathbb{P}(\varnothing)=0, \mathbb{P}(\Omega)=1$
- Complement rule: $\mathbb{P}(A)=1-\mathbb{P}\left(A^{c}\right)$

Complement Rule and General Addition Rule

Review: Probability Rules

- $0 \leq \mathbb{P}(A) \leq 1$ for any event $A, \mathbb{P}(\varnothing)=0, \mathbb{P}(\Omega)=1$
- Complement rule: $\mathbb{P}(A)=1-\mathbb{P}\left(A^{c}\right)$

Complement Rule and General Addition Rule

Review: Probability Rules

- $0 \leq \mathbb{P}(A) \leq 1$ for any event $A, \mathbb{P}(\varnothing)=0, \mathbb{P}(\Omega)=1$
- Complement rule: $\mathbb{P}(A)=1-\mathbb{P}\left(A^{c}\right)$
- General addition rule: $\mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A \cap B)$

Review: Probability Rules

- $0 \leq \mathbb{P}(A) \leq 1$ for any event $A, \mathbb{P}(\varnothing)=0, \mathbb{P}(\Omega)=1$
- Complement rule: $\mathbb{P}(A)=1-\mathbb{P}\left(A^{c}\right)$
- General addition rule: $\mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A \cap B)$

Review: Probability Rules

- $0 \leq \mathbb{P}(A) \leq 1$ for any event $A, \mathbb{P}(\varnothing)=0, \mathbb{P}(\Omega)=1$
- Complement rule: $\mathbb{P}(A)=1-\mathbb{P}\left(A^{c}\right)$
- General addition rule: $\mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A \cap B)$
- Multiplication rule:

$$
\mathbb{P}(A \cap B)=\mathbb{P}(A \mid B) \times \mathbb{P}(B)=\mathbb{P}(B \mid A) \times \mathbb{P}(A)
$$

Review: Probability Rules

- $0 \leq \mathbb{P}(A) \leq 1$ for any event $A, \mathbb{P}(\varnothing)=0, \mathbb{P}(\Omega)=1$
- Complement rule: $\mathbb{P}(A)=1-\mathbb{P}\left(A^{c}\right)$
- General addition rule: $\mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A \cap B)$
- Multiplication rule:

$$
\mathbb{P}(A \cap B)=\mathbb{P}(A \mid B) \times \mathbb{P}(B)=\mathbb{P}(B \mid A) \times \mathbb{P}(A)
$$

Review: Probability Rules

- $0 \leq \mathbb{P}(A) \leq 1$ for any event $A, \mathbb{P}(\varnothing)=0, \mathbb{P}(\Omega)=1$
- Complement rule: $\mathbb{P}(A)=1-\mathbb{P}\left(A^{c}\right)$
- General addition rule: $\mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A \cap B)$
- Multiplication rule:
$\mathbb{P}(A \cap B)=\mathbb{P}(A \mid B) \times \mathbb{P}(B)=\mathbb{P}(B \mid A) \times \mathbb{P}(A)$
- Conditional probability: $\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$

Review: Probability Rules

- $0 \leq \mathbb{P}(A) \leq 1$ for any event $A, \mathbb{P}(\varnothing)=0, \mathbb{P}(\Omega)=1$
- Complement rule: $\mathbb{P}(A)=1-\mathbb{P}\left(A^{c}\right)$
- General addition rule: $\mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A \cap B)$
- Multiplication rule:
$\mathbb{P}(A \cap B)=\mathbb{P}(A \mid B) \times \mathbb{P}(B)=\mathbb{P}(B \mid A) \times \mathbb{P}(A)$
- Conditional probability: $\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$

Review: Probability Rules

- $0 \leq \mathbb{P}(A) \leq 1$ for any event $A, \mathbb{P}(\varnothing)=0, \mathbb{P}(\Omega)=1$
- Complement rule: $\mathbb{P}(A)=1-\mathbb{P}\left(A^{c}\right)$
- General addition rule: $\mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A \cap B)$
- Multiplication rule:
$\mathbb{P}(A \cap B)=\mathbb{P}(A \mid B) \times \mathbb{P}(B)=\mathbb{P}(B \mid A) \times \mathbb{P}(A)$
- Conditional probability: $\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$
- Law of total probability:
$\mathbb{P}(B)=\sum_{i=1}^{k} \mathbb{P}\left(B \cap A_{i}\right)=\sum_{i=1}^{k} \mathbb{P}\left(B \mid A_{i}\right) \times \mathbb{P}\left(A_{i}\right)$

Review: Probability Rules

- $0 \leq \mathbb{P}(A) \leq 1$ for any event $A, \mathbb{P}(\varnothing)=0, \mathbb{P}(\Omega)=1$
- Complement rule: $\mathbb{P}(A)=1-\mathbb{P}\left(A^{c}\right)$
- General addition rule: $\mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A \cap B)$
- Multiplication rule:
$\mathbb{P}(A \cap B)=\mathbb{P}(A \mid B) \times \mathbb{P}(B)=\mathbb{P}(B \mid A) \times \mathbb{P}(A)$
- Conditional probability: $\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$
- Law of total probability:
$\mathbb{P}(B)=\sum_{i=1}^{k} \mathbb{P}\left(B \cap A_{i}\right)=\sum_{i=1}^{k} \mathbb{P}\left(B \mid A_{i}\right) \times \mathbb{P}\left(A_{i}\right)$

Review: Probability Rules

- $0 \leq \mathbb{P}(A) \leq 1$ for any event $A, \mathbb{P}(\varnothing)=0, \mathbb{P}(\Omega)=1$
- Complement rule: $\mathbb{P}(A)=1-\mathbb{P}\left(A^{c}\right)$
- General addition rule: $\mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A \cap B)$
- Multiplication rule:
$\mathbb{P}(A \cap B)=\mathbb{P}(A \mid B) \times \mathbb{P}(B)=\mathbb{P}(B \mid A) \times \mathbb{P}(A)$
- Conditional probability: $\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$
- Law of total probability:
$\mathbb{P}(B)=\sum_{i=1}^{k} \mathbb{P}\left(B \cap A_{i}\right)=\sum_{i=1}^{k} \mathbb{P}\left(B \mid A_{i}\right) \times \mathbb{P}\left(A_{i}\right)$
- Independence: if A and B are independent, then $\mathbb{P}(A \mid B)=\mathbb{P}(A), \mathbb{P}(B \mid A)=\mathbb{P}(B)$, and $\mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)$

