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Random Variables

A random variable is a real–valued function whose domain is
the sample space of a random experiment. In other words, a
random variable is a function

X ∶ Ω↦ R

where Ω is the sample space of the random experiment under
consideration and R represents the set of all real numbers.
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Discrete and Continuous Random Variables

There are two main types of quantitative random variables
(r.v.s): discrete and continuous. A discrete r.v. often involves a
count of something.

Discrete random variable

A random variable X is called a discrete random variable if the
outcome of the random variable is limited to a countable set of
real numbers (usually integers).

1 2 3 4 5 6 7
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Example
The following is a chart describing the number of siblings each
student in a particular class has.

Siblings Frequency Relative Frequency
0 8 .200
1 17 .425
2 11 .275
3 3 .075
4 1 .025

Total 40 1

Let’s define the event A as the event that a randomly chosen
student has 2 or more siblings. What is P(A)?

Solution.

P(A) = P(X ≥ 2) = P(X = 2) + P(X = 3) + P(X = 4)
= .275 + .075 + .025 = .375
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Probability Mass Function

Let X be a discrete random variable. Then the probability mass
function (pmf) of X is the real–valued function defined on R by

pX(x) = P(X = x)

The capital letter, X, is used to denote random variable.
Lowercase letter, x, is used to denote possible values of the
random variable.

pX(x): The probability that the discrete random variable
X is exactly equal to x.
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Probability Mass Function Example

Flip a fair coin 3 times. Let X denote the number of heads
tossed in the 3 flips. Create a pmf for X

Solution.

The random variable X maps any outcome to an integer (e.g.
X ((T, T, T)) = 0,X((H,H,T)) = 2)

x 0 1 2 3
pX(x) 1

8
3
8

3
8

1
8
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Properties of a PMF

0 ≤ pX(x) ≤ 1, x ∈ {0,1,2,⋯}

∑x pX(x) = 1



Probability III

Random Variables

Bernoulli and Binomial
Random Variables

Hypergeometric
Random Variable

7.9

Example

Let X be a random variable with pmf defined as follows:

pX(x) = {
k(5 − x) if x = 0,1,2,3,4
0 otherwise

1 Find the value of k that makes pX(x) a legitimate pmf.

2 What is the probability that X is between 1 and 3 inclusive?

3 If X is not 0, what is the probability that X is less than 3?
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Mean of Discrete Random Variables

The mean of a discrete r.v. X, denoted by E[X], is defined by

E[X] =∑
x

x × pX(x)

Remark:

The mean of a discrete r.v. is a weighted average of its
possible values, and the weight used is its probability.
Sometimes we refer to the expected value as the expectation
(expected value), or the first moment.

For any function, say g(X), we can also find an expectation of
that function. It is

E[g(X)] =∑
x

g(x) × pX(x)

Example
E[X2] =∑

x
x2 × pX(x)
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Properties of Mean

Let X and Y be discrete r.v.s defined on the same sample
space and having finite expectation (i.e. E[X],E[Y] <∞). Let a
and b be constants. Then the following hold:

E[X + Y] = E[X] + E[Y]

E[aX + b] = a × E[X] + b
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Number of Siblings Example Revisited

Siblings (X) Frequency Relative Frequency
0 8 .200
1 17 .425
2 11 .275
3 3 .075
4 1 .025

Total 40 1

Find the expected value of the number of siblings

Solution.

E[X] = ∑x xpX(x) = 0×.200+1×.425+2×.275+3×.075+4×.025 = 1.3
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Variance/Standard Deviation of Discrete r.v.’s

The variance of a (discrete) r.v., denoted by Var(X), is a
measure of the spread, or variability, in the r.v. Var(X) is
defined by

Var(X) = E[(X − E[x])2]
or

Var(X) = E[X2] − (E[X])2

The standard deviation, denoted by sd(X), is the square root
of its variance
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Properties of Variance

Let c be a constant. Then the following hold:

Var(cX) = c2 × Var(X)

Var(X + c) = Var(X)
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Example

Suppose X and Y are random variables with E[X] = 3, E[Y] = 4
and Var(X) = 4. Find:

1 E[2X + 1]

2 E[X − Y]

3 E[X2]

4 E[X2 − 4]

5 E[(X − 4)2]

6 Var(2X − 4)
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Bernoulli Trials

Many problems in probability and its applications involve
independently repeating a random experiment and observing
at each repetition whether a specified event occurs. We label
the occurrence of the specified event a success and the
nonoccurrence of the specified event a failure.

Example:
Tossing a coin several times
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Bernoulli Trials Cont’d

Bernoulli trials:

Each repetition of the random experiment is called a trial

We use p to denote the probability of a success on a
single trial

Properties of Bernoulli trials:

Exactly two possible outcomes success and failure

The outcomes of trials are independent of one another

The success probability, p, and therefore the failure
probability, (1 − p), remains the same from trial to trial
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Binomial Random Variable
We define the Binomial r.v. as the number of successes in n
Bernoulli trials, where the probability of success in one trial is
p. Let X be a Binomial r.v.

The definition of X: # of successes in n trials of Bernoulli
trials.

The support: 0,1,⋯,n
Its parameter(s) and definition(s): p: the probability of
success on 1 trial; n is the sample size
The probability mass function (pmf):

pX(x) = (
n
x
)px(1 − p)n−x, x = 0,1,⋯,n

The expected value:

E[X] = np

The variance:
Var(X) = np(1 − p)
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Example

To test for Extrasensory perception (ESP), we have 4 cards.
They will be shuffled and one randomly selected each time,
and you are to guess which card is selected. This is repeated
10 times. Suppose you do not have ESP. Let R be the number
of times you guess a card correctly. What are the distribution
and parameter(s) of R? What is the expected value of R?
Furthermore, suppose that you get certified as having ESP if
you score at least an 8 on the test. What is the probability that
you get certified as having ESP?

Solution.

R ∼ Binomial(n = 10,p = 1/4 = .25)
E[R] = n × p = 2.5
P(X ≥ 8) = .000416
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Example

Suppose that 95% of consumers can recognize Coke in a blind
taste test. Assume consumers are independent of one another.
The company randomly selects 4 consumers for a taste test.
Let X be the number of consumers who recognize Coke.

1 What is the probability that X is at least 1?

2 What is the probability that X is at most 3?
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Binomial and Hypergeometric r.v.s

The binomial distribution describes the probability of k
successes in n trials with replacement.

We want a distribution to describe the probability of k
successes in n trials without replacement from a finite
population of size N containing exactly K successes.

⇒ Hypergeometric Distribution

Important applications are quality control and statistical
estimation of population proportions. The hypergeometric
r.v. is the equivalent of a Binomial r.v. except that sampling is
done without replacement.
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An Example of Hypergeometric r.v.
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Hypergeometric r.v.s

Let X be a hypergeometric r.v.

The definition of X: # of successes in n trials of a random
experiment, where sampling is done without replacement
(or trials are dependent)

The support: k ∈ {max(0,n +K −N),⋯,min(n,K)}

Its parameter(s) and definition(s): N: the population size,
n: the sample size, and K: number of success in the
population

The probability mass function (pmf): pX(k) =
(K

k)×(N−K
n−k )

(N
n)

The expected value: E[X] = n K
N

The variance: Var(X) = n K
N

N−K
N

N−n
N−1
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Example

There are 100 identical looking 52" TVs at Best Buy in
Anderson, SC. Let 10 of them be defective. Suppose we want
to buy 8 of the aforementioned TVs (at random). What is the
probability that we don’t get any defective TVs?

Solution.

Let D be the number of defective TVs in the sample.
D ∼ Hyp(N = 100,n = 8,K = 10)
P(D = 0) = (

10
0 )(90

8 )
(100

8 )
= 0.4166
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Summary

In this lecture, we learned

Random Variables

The probability mass function, mean, and variance of a
discrete random variable

Examples of discrete random variables:
Bernoulli/Binomial, Hyper-geometric
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