Lecture 8 Probability IV

Readings: IntroStat Chapter 4; OpenIntro Chapter 3

STAT 8010 Statistical Methods I May 25, 2023

Whitney Huang Clemson University

From Discrete to Continuous Random Variables

Probability Mass Functions vs. Probability Density Functions

Pmf for Binomial(n=10,p=0.3)

Pdf for Normal(mean=5, sd=1.5)

Remarks:

- pmf assigns probabilities to each possible values of a discrete random variable
- pdf describes the relative likelihood for a continuous random variable to take on a given interval

Probability Mass Functions v.s. Probability Density

 Functions cont'dRecall the properties of discrete probability mass functions (Pmfs):

- $0 \leq p_{X}(x) \leq 1$ for all possible values of x

Probability Mass Functions v.s. Probability Density

 Functions cont'dRecall the properties of discrete probability mass functions (Pmfs):

- $0 \leq p_{X}(x) \leq 1$ for all possible values of x
- $\sum_{x} p_{X}(x)=1$

Probability Mass Functions v.s. Probability Density

 Functions cont'dRecall the properties of discrete probability mass functions (Pmfs):

- $0 \leq p_{X}(x) \leq 1$ for all possible values of x
- $\sum_{x} p_{X}(x)=1$
- $\mathbb{P}(a \leq X \leq b)=\sum_{x=a}^{x=b} p_{X}(x)$

Probability Mass Functions v.s. Probability Density

 Functions cont'dRecall the properties of discrete probability mass functions (Pmfs):

- $0 \leq p_{X}(x) \leq 1$ for all possible values of x
- $\sum_{x} p_{X}(x)=1$
- $\mathbb{P}(a \leq X \leq b)=\sum_{x=a}^{x=b} p_{X}(x)$

Probability Mass Functions v.s. Probability Density Functions cont'd

Recall the properties of discrete probability mass functions (Pmfs):

- $0 \leq p_{X}(x) \leq 1$ for all possible values of x
- $\sum_{x} p_{X}(x)=1$
- $\mathbb{P}(a \leq X \leq b)=\sum_{x=a}^{x=b} p_{X}(x)$

For continuous distributions, the properties for probability density functions (Pdfs) are similar:

- $f_{X}(x) \geq 0$ for all possible values of x

Probability Mass Functions v.s. Probability Density Functions cont'd

Recall the properties of discrete probability mass functions (Pmfs):

- $0 \leq p_{X}(x) \leq 1$ for all possible values of x
- $\sum_{x} p_{X}(x)=1$
- $\mathbb{P}(a \leq X \leq b)=\sum_{x=a}^{x=b} p_{X}(x)$

For continuous distributions, the properties for probability density functions (Pdfs) are similar:

- $f_{X}(x) \geq 0$ for all possible values of x
- $\int_{-\infty}^{\infty} f_{X}(x) d x=1$

Probability Mass Functions v.s. Probability Density Functions cont'd

Recall the properties of discrete probability mass functions (Pmfs):

- $0 \leq p_{X}(x) \leq 1$ for all possible values of x
- $\sum_{x} p_{X}(x)=1$
- $\mathbb{P}(a \leq X \leq b)=\sum_{x=a}^{x=b} p_{X}(x)$

For continuous distributions, the properties for probability density functions (Pdfs) are similar:

- $f_{X}(x) \geq 0$ for all possible values of x
- $\int_{-\infty}^{\infty} f_{X}(x) d x=1$
- $\mathbb{P}(a \leq X \leq b)=\int_{a}^{b} f_{X}(x) d x$
- The $\operatorname{cdf} F_{X}(x)$ is defined as $F_{X}(x)=\mathbb{P}(X \leq x)=\int_{-\infty}^{x} f_{X}(x) d x$
- we use cdf to calculate probabilities of a continuous random variable within an interval, i.e. $\mathbb{P}(a \leq X \leq b)=$ $\int_{a}^{b} f_{X}(x) d x=\int_{-\infty}^{b} f_{X}(x) d x-\int_{-\infty}^{a} f_{X}(x) d x=F_{X}(b)-F_{X}(a)$

Remark: $\mathbb{P}(X=x)=\int_{x}^{x} f_{X}(x) d x=0$ for all possible values of x

Expected Value and Variance

Recall the expected value formula for the discrete random variable: $\mathbb{E}[X]=\sum_{x} x p_{X}(x)$
For continuous random variables, we have similar formulas:
Let a, b, and c are constant real numbers

- $\mathrm{E}[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x$

Expected Value and Variance

Recall the expected value formula for the discrete random variable: $\mathbb{E}[X]=\sum_{x} x p_{X}(x)$
For continuous random variables, we have similar formulas:
Let a, b, and c are constant real numbers

- $\mathrm{E}[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x$
- $\mathrm{E}[g(X)]=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x$

Expected Value and Variance

Recall the expected value formula for the discrete random variable: $\mathbb{E}[X]=\sum_{x} x p_{X}(x)$
For continuous random variables, we have similar formulas:
Let a, b, and c are constant real numbers

- $\mathrm{E}[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x$
- $\mathrm{E}[g(X)]=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x$
- $\mathrm{E}[X+Y]=\mathrm{E}[X]+\mathrm{E}[Y]$

Expected Value and Variance

Recall the expected value formula for the discrete random variable: $\mathbb{E}[X]=\sum_{x} x p_{X}(x)$
For continuous random variables, we have similar formulas:
Let a, b, and c are constant real numbers

- $\mathrm{E}[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x$
- $\mathrm{E}[g(X)]=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x$
- $\mathrm{E}[X+Y]=\mathrm{E}[X]+\mathrm{E}[Y]$
- $\mathrm{E}[c X]=c \mathrm{E}[X]$

Expected Value and Variance

Recall the expected value formula for the discrete random variable: $\mathbb{E}[X]=\sum_{x} x p_{X}(x)$
For continuous random variables, we have similar formulas:
Let a, b, and c are constant real numbers

- $\mathrm{E}[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x$
- $\mathrm{E}[g(X)]=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x$
- $\mathrm{E}[X+Y]=\mathrm{E}[X]+\mathrm{E}[Y]$
- $\mathrm{E}[c X]=c \mathrm{E}[X]$
- $\mathrm{E}[a X+b Y]=a \mathrm{E}[X]+b \mathrm{E}[Y]$

Expected Value and Variance

Recall the expected value formula for the discrete random variable: $\mathbb{E}[X]=\sum_{x} x p_{X}(x)$ For continuous random variables, we have similar formulas: Let a, b, and c are constant real numbers

- $\mathrm{E}[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x$
- $\mathrm{E}[g(X)]=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x$
- $\mathrm{E}[X+Y]=\mathrm{E}[X]+\mathrm{E}[Y]$
- $\mathrm{E}[c X]=c \mathrm{E}[X]$
- $\mathrm{E}[a X+b Y]=a \mathrm{E}[X]+b \mathrm{E}[Y]$
- $\operatorname{Var}(X)=\mathrm{E}\left[X^{2}\right]-(\mathrm{E}[X])^{2}=\int_{-\infty}^{\infty} x^{2} f_{X}(x) d x-\left(\int_{-\infty}^{\infty} x f_{X}(x) d x\right)^{2}$

Expected Value and Variance

Recall the expected value formula for the discrete random variable: $\mathbb{E}[X]=\sum_{x} x p_{X}(x)$ For continuous random variables, we have similar formulas:
Let a, b, and c are constant real numbers

- $\mathrm{E}[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x$
- $\mathrm{E}[g(X)]=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x$
- $\mathrm{E}[X+Y]=\mathrm{E}[X]+\mathrm{E}[Y]$
- $\mathrm{E}[c X]=c \mathrm{E}[X]$
- $\mathrm{E}[a X+b Y]=a \mathrm{E}[X]+b \mathrm{E}[Y]$
- $\operatorname{Var}(X)=\mathrm{E}\left[X^{2}\right]-(\mathrm{E}[X])^{2}=\int_{-\infty}^{\infty} x^{2} f_{X}(x) d x-\left(\int_{-\infty}^{\infty} x f_{X}(x) d x\right)^{2}$
- $\operatorname{Var}(c X)=c^{2} \operatorname{Var}(X)$

Expected Value and Variance

Recall the expected value formula for the discrete random variable: $\mathbb{E}[X]=\sum_{x} x p_{X}(x)$
For continuous random variables, we have similar formulas:
Let a, b, and c are constant real numbers

- $\mathrm{E}[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x$
- $\mathrm{E}[g(X)]=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x$
- $\mathrm{E}[X+Y]=\mathrm{E}[X]+\mathrm{E}[Y]$
- $\mathrm{E}[c X]=c \mathrm{E}[X]$
- $\mathrm{E}[a X+b Y]=a \mathrm{E}[X]+b \mathrm{E}[Y]$
- $\operatorname{Var}(X)=\mathrm{E}\left[X^{2}\right]-(\mathrm{E}[X])^{2}=\int_{-\infty}^{\infty} x^{2} f_{X}(x) d x-\left(\int_{-\infty}^{\infty} x f_{X}(x) d x\right)^{2}$
- $\operatorname{Var}(c X)=c^{2} \operatorname{Var}(X)$
- $\operatorname{Var}(X-c)=\operatorname{Var}(X)$

Example 1

Let X represent the diameter in inches of a circular disk cut by a machine. Let $f_{X}(x)=c\left(4 x-x^{2}\right)$ for $1 \leq x \leq 4$ and be 0 otherwise. Answer the following questions:

- Find the value of c that makes this a valid pdf

Example 1

Let X represent the diameter in inches of a circular disk cut by a machine. Let $f_{X}(x)=c\left(4 x-x^{2}\right)$ for $1 \leq x \leq 4$ and be 0 otherwise. Answer the following questions:

- Find the value of c that makes this a valid pdf

C Cind the expected value and variance of X

Example 1

Let X represent the diameter in inches of a circular disk cut by a machine. Let $f_{X}(x)=c\left(4 x-x^{2}\right)$ for $1 \leq x \leq 4$ and be 0 otherwise. Answer the following questions:
(. Find the value of c that makes this a valid pdf
(2) Find the expected value and variance of X
(3) What is the probability that X is within .5 inches of the expected diameter?

Example 1

Let X represent the diameter in inches of a circular disk cut by a machine. Let $f_{X}(x)=c\left(4 x-x^{2}\right)$ for $1 \leq x \leq 4$ and be 0 otherwise. Answer the following questions:

- Find the value of c that makes this a valid pdf
(2) Find the expected value and variance of X
(3) What is the probability that X is within .5 inches of the expected diameter?
(c) Find $F_{X}(x)$

Example 1 Cont'd

(1) $\int_{1}^{4} f_{X}(x) d x=\int_{1}^{4} c\left(4 x-x^{2}\right) d x=9 c=1 \Rightarrow c=\frac{1}{9}$
(2) $\mathrm{E}[X]=\int_{1}^{4} x f_{X}(x) d x=2.25$
$\mathrm{E}\left[X^{2}\right]=\int_{1}^{4} x^{2} f_{X}(x) d x=5.6$
$\Rightarrow \operatorname{Var}(X)=\mathrm{E}\left[X^{2}\right]-(\mathrm{E}[X])^{2}=.5375$
(3) $\mathrm{P}(1.75 \leq X \leq 2.75)=\int_{1.75}^{2.75} f_{X}(x) d x=.4282$
(4) $F_{X}(x)=\int f_{X}(x) d x=\frac{1}{9}\left(2 x^{2}-\frac{x^{3}}{3}\right)$ for $1 \leq X \leq 4$ and 0 if $x<1$ and 1 if $x>4$

Example 2

Let $f_{X}(x)=.25 x$ for $1 \leq x \leq 3$ and 0 otherwise:
(- Is X more likely to be within [1,2] or within [2,3]? First answer this question using logic. Check your answer by calculating the probabilities
(2) What is the probability that X is more than 2.2 ?
(3) Find the mean and standard deviation of X
(- Find $F_{X}(x)$
© What value of X represents the top 15% of the distribution?

Example 2 Cont'd

Solution.

Continuous Random Variables

- X is more likely be within $[2,3]$ because $f_{X}(x)$ is increases with x
$\mathbb{P}(1 \leq X \leq 2)=\int_{1}^{2} f_{X}(x) d x=.375 \mathbb{P}(2 \leq X \leq 3)=\int_{2}^{3} f_{X}(x) d x=$.625

Example 2 Cont'd

Solution.

(X is more likely be within $[2,3]$ because $f_{X}(x)$ is increases with x
$\mathbb{P}(1 \leq X \leq 2)=\int_{1}^{2} f_{X}(x) d x=.375 \mathbb{P}(2 \leq X \leq 3)=\int_{2}^{3} f_{X}(x) d x=$.625
(2) $\mathbb{P}(X \geq 2.2)=\int_{2.2}^{3} f_{X}(x) d x=.52$

Example 2 Cont'd

Solution.

(X is more likely be within $[2,3]$ because $f_{X}(x)$ is increases with x
$\mathbb{P}(1 \leq X \leq 2)=\int_{1}^{2} f_{X}(x) d x=.375 \mathbb{P}(2 \leq X \leq 3)=\int_{2}^{3} f_{X}(x) d x=$. 625
(2) $\mathbb{P}(X \geq 2.2)=\int_{2.2}^{3} f_{X}(x) d x=.52$
(3) $\mathbb{E}[X]=\int_{1}^{3} x f_{X}(x) d x=2.1667$
$\mathbb{E}\left[X^{2}\right]=\int_{1}^{3} x^{2} f_{X}(x) d x=5$
$\Rightarrow \operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-(\mathbb{E}[X])^{2}=.3056 \Rightarrow \operatorname{Sd}(X)=.5528$

Example 2 Cont'd

Solution.

(X is more likely be within $[2,3]$ because $f_{X}(x)$ is increases with x
$\mathbb{P}(1 \leq X \leq 2)=\int_{1}^{2} f_{X}(x) d x=.375 \mathbb{P}(2 \leq X \leq 3)=\int_{2}^{3} f_{X}(x) d x=$.625
(2) $\mathbb{P}(X \geq 2.2)=\int_{2.2}^{3} f_{X}(x) d x=.52$
(3) $\mathbb{E}[X]=\int_{1}^{3} x f_{X}(x) d x=2.1667$
$\mathbb{E}\left[X^{2}\right]=\int_{1}^{3} x^{2} f_{X}(x) d x=5$
$\Rightarrow \operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-(\mathbb{E}[X])^{2}=.3056 \Rightarrow \operatorname{Sd}(X)=.5528$
(9) $F_{X}(x)=\int f_{X}(x) d x=\frac{1}{8}\left(x^{2}-1\right)$ for $1 \leq X \leq 3$ and 0 if $x<1$ and 1 if $x>3$

Example 2 Cont'd

Solution.

(X is more likely be within $[2,3]$ because $f_{X}(x)$ is increases with x
$\mathbb{P}(1 \leq X \leq 2)=\int_{1}^{2} f_{X}(x) d x=.375 \mathbb{P}(2 \leq X \leq 3)=\int_{2}^{3} f_{X}(x) d x=$.625
(2) $\mathbb{P}(X \geq 2.2)=\int_{2.2}^{3} f_{X}(x) d x=.52$
(3) $\mathbb{E}[X]=\int_{1}^{3} x f_{X}(x) d x=2.1667$
$\mathbb{E}\left[X^{2}\right]=\int_{1}^{3} x^{2} f_{X}(x) d x=5$
$\Rightarrow \operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-(\mathbb{E}[X])^{2}=.3056 \Rightarrow \operatorname{Sd}(X)=.5528$
(9) $F_{X}(x)=\int f_{X}(x) d x=\frac{1}{8}\left(x^{2}-1\right)$ for $1 \leq X \leq 3$ and 0 if $x<1$ and 1 if $x>3$
(3) $X_{.85}$ is the x value such that $\int_{1}^{x} f_{X}(x) d x=.85 \Rightarrow X_{.85}=2.7928$

Summary

In this lecture, we learned

- Continuous Random Variables
- Probability Density Function / Cumulative Distribition Function

