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Lab Objective

• To gain experience with R, a programming language and free software environment for statistical
computing and graphics.

• To learn how perform Monte Carlo simulation in R.

Random Experiment

Let’s roll a dice twice. We will use sample command in R to conduct such a (random) experiment. Type
?sample to learn about this command

• Description
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sample takes a sample of the specified size from the elements of x using either with or without replacement.

• Usage

sample(x, size, replace = FALSE, prob = NULL)

• Arguments

• x: either a vector of one or more elements from which to choose.

• size: a non-negative integer giving the number of items to choose.

• replace: should sampling be with replacement?

• prob: a vector of probability weights for obtaining the elements of the vector being sampled.

sample(1:6, size = 2, replace = T)

## [1] 4 6

Empirical Probability

out1 <- sample(0:1, size = 1000, replace = T, prob = c(0.5, 0.5))
out2 <- sample(0:1, size = 1000, replace = T, prob = c(0.3, 0.7))

Logical Operators in R

omega <- letters
A <- sample(omega, 5, replace = F)
A

## [1] "d" "e" "o" "p" "b"

B <- sample(omega, 4, replace = F)
B

## [1] "y" "g" "i" "v"

union(A, B)

## [1] "d" "e" "o" "p" "b" "y" "g" "i" "v"

intersect(A, B)

## character(0)
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Complement Rule Example

Suppose we rolled a fair, six–sided die 10 times. Let T be the event that we roll at least 1 three. If one were
to calculate T you would need to find the probability of 1 three, 2 threes, · · ·, and 10 threes and add them
all up. However, you can use the complement rule to calculate P(T )

M <- 1000
out <- replicate(M, sample(1:6, 10, replace = T))
count_3 <- apply(out, 2, function(x) sum(x == 3))
sum(count_3 >= 1) / M

## [1] 0.831

1 - pbinom(0, 10, 1/6)

## [1] 0.8384944

pbinom(0, 10, 1/6, lower.tail = F)

## [1] 0.8384944

The Monty Hall Problem

A R function for perfoming Monty Hall game

MontyHall <- function() {
# Assign the prize
prize <- sample(1:3, 1)
# Pick a door
choice <- sample(1:3, 1)
# Monty picks a door
monty <- sample(c(1:3)[-c(choice, prize)], 1)
return(ifelse(prize != choice, "Switch", "Stick"))

}

Conducting a Monte Carlo experiment

M = 100
try <- replicate(M, MontyHall())
table(try) / M

## try
## Stick Switch
## 0.31 0.69
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Rare Disease Example

Let us assume that a specific disease is only present in 5 out of every 1,000 people. Suppose that the test
for the disease is accurate 99% of the time a person has the disease and 95% of the time that a person lacks
the disease. What is the probability that the person has the disease given that they tested positive?

set.seed(1234)
n = 10000; p = 0.005
sub <- 1:n
d <- rbinom(n, 1, prob = p)
TP <- sum(rbinom(length(sub[d]), 1, prob = .99))
TN <- sum(rbinom(n - length(sub[d]), 1, prob = .95))
FP <- (n - sum(d)) - TN
FN <- sum(d) - TP
mat <- matrix(c(TP, FP, FN, TN), 2)
colnames(mat) <- c("Test positive", "Test negative")
rownames(mat) <- c("Disease", "No disease")
mat

## Test positive Test negative
## Disease 40 0
## No disease 479 9481

Number of Siblings Example

x <- 0:4
p <- c(.2, .425, .275, .075, .025)

sum(x * p)

## [1] 1.3

weighted.mean(x, p)

## [1] 1.3

sum((x - sum(x * p))ˆ2 * p)

## [1] 0.91

sum(xˆ2 * p) - (sum(x * p))ˆ2

## [1] 0.91
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ESP Example

To test for Extrasensory perception (ESP), we have 4 cards. They will be shuffled and one randomly selected
each time, and you are to guess which card is selected. This is repeated 10 times. Suppose you do not have
ESP. Let R be the number of times you guess a card correctly. What are the distribution and parameter(s)
of R? What is the expected value of R? Furthermore, suppose that you get certified as having ESP if you
score at least an 8 on the test. What is the probability that you get certified as having ESP?

Since R ∼ binom(n = 10, p = 0.25). We can use the built-in functions d/p/q/r-binom to carry out the
calculations.

*Usage

• dbinom(x, size, prob, log = FALSE)
• pbinom(q, size, prob, lower.tail = TRUE, log.p = FALSE)
• qbinom(p, size, prob, lower.tail = TRUE, log.p = FALSE)
• rbinom(n, size, prob)

*Arguments

• x, q: vector of quantiles.

• p: vector of probabilities.

• size: number of trials.

• prob: probability of success on each trial.

• log, log.p: logical; if TRUE, probabilities p are given as log(p).

• lower.tail:logical; if TRUE (default), probabilities are P[X ≤ x], otherwise, P[X > x].

sum(dbinom(8:10, 10, 0.25))

## [1] 0.000415802

pbinom(7, 10, 0.25, lower.tail = F)

## [1] 0.000415802

1 - pbinom(7, 10, 0.25)

## [1] 0.000415802

M = 100000
sim <- rbinom(M, 10, prob = 0.25)
length(which(sim >= 8)) / M

## [1] 0.00053

TV Example

There are 100 identical looking 52” TVs at Best Buy in Anderson, SC. Let 10 of them be defective. Suppose
we want to buy 8 of the aforementioned TVs (at random). What is the probability that we don’t get any
defective TVs?
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dhyper(0, 10, 90, 8)

## [1] 0.4165533

trial <- replicate(100000, sample(1:100, 8, replace = F))
min <- apply(trial, 2, min)
sum(min > 10) / 100000

## [1] 0.41603

Continuos Random Variable

Let fX(x) = .25x for 1 ≤ x ≤ 3 and 0 otherwise

Probability Density Function

xg <- seq(1, 3, len = 100)
fg <- xg / 4
par(las = 1, mar = c(3.5, 3.5, 1, 0.5), mgp = c(2, 1, 0))
plot(xg, fg, type = "l", xlim = c(0, 4), ylim = c(0, 1),

xlab = expression(x), ylab = expression(f(x)), col = "blue",
yaxs = "i")

segments(1, 0, y1 = 1 /4, col = "blue")
segments(3, 0, y1 = 3 /4, col = "blue")
grid()
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Estimating Probability via Monte Carlo

M = 1000
x <- sqrt(8 * runif(M) + 1)
par(las = 1, mar = c(3.5, 3.5, 1, 0.5), mgp = c(2, 1, 0))
plot(xg, fg, type = "l", xlim = c(0, 4), ylim = c(0, 1),

xlab = expression(x), ylab = expression(f(x)), col = "blue",
yaxs = "i")

grid()
hist(x, 40, prob = T, add = T, col = "lightblue", border = "gray")
segments(1, 0, y1 = 1 /4, col = "blue")
segments(3, 0, y1 = 3 /4, col = "blue")

0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

x

f(x
)

sum(x > 1 & x < 2) / M

## [1] 0.365
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