Lecture 10
Multiple Linear Regression VI
Reading: Chapter 13

STAT 8020 Statistical Methods II

September 22, 2020

Whitney Huang
Clemson University

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Agenda

Regression with Both Quantitative and Qualitative PredictorsPolynomial Regression

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Regression with Both Quantitative and Qualitative Predictors

Multiple Linear Regression

$Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\cdots+\beta_{p-1} X_{p-1}+\varepsilon, \quad \varepsilon \sim \mathrm{N}\left(0, \sigma^{2}\right)$
$X_{1}, X_{2}, \cdots, X_{p-1}$ are the predictors.
Question: What if some of the predictors are qualitative (categorical) variables?
\Rightarrow We will need to create dummy (indicator) variables for those categorical variables

Example: We can encode Gender into 1 (Female) and 0 (Male)

Multiple Linear Regression VI
 Notes

CLEMS
Regression with nd Qualitativ
redictors
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The 2008-09 nine-month academic salary for Assistant Professors, Associate Professors and Professors in a college in the U.S. The data were collected as part of the on-going effort of the college's administration to monitor salary differences between male and female faculty members.

Predictors

We have three categorical variables, namely, rank, discipline, and sex.

Dummy Variable

For binary categorical variables:

$$
\begin{gathered}
X_{\text {sex }}= \begin{cases}1 & \text { if sex = male } \\
0 & \text { if sex }=\text { female }\end{cases} \\
X_{\text {discip }}= \begin{cases}0 & \text { if discip }=\mathrm{A}, \\
1 & \text { if discip }=\mathrm{B} .\end{cases}
\end{gathered}
$$

For categorical variable with more than two categories:

$$
\begin{aligned}
& X_{\text {rank } 1}= \begin{cases}0 & \text { if rank }=\text { Assistant Prof }, \\
1 & \text { if rank }=\text { Associated Prof. }\end{cases} \\
& X_{\text {rank 2 }}= \begin{cases}0 & \text { if rank }=\text { Associated Prof }, \\
1 & \text { if rank }=\text { Full Prof. }\end{cases}
\end{aligned}
$$

Multiple Linear
Regression VI CLEMSere
Regression with Regression with
Both Ountitive and Qualitative
Predictors Predictors

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Multiple Line Regression VI CLAMS

Regression with
Both Quantitative
Both Quantitative
and Qualitative and Qualitative
Predictors
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Design Matrix

$>$ head (X)

1	1	0	1	1	
2	1	0	1	1	20
3	1	0	0	1	
4	1	0	1	1	45
5	1	0	1	1	
6	1	1	0	1	
	yrs.service	sexMale			
1	18	1			
2	16	1			
3	3	1			
4	39	1			
5	41	1			
6	6	1			

(Intercept) $67884.32 \quad 4536.89 \quad 14.963<2 e-16^{* * *}$ $\begin{array}{lllrrr}\text { disciplineB } & 13937.47 & 2346.53 & 5.940 & 6.32 \mathrm{e}-09 & * * *\end{array}$ rankAssocProf $13104.15 \quad 4167.31 \quad 3.145 \quad 0.00179$ ** rankProf $46032.554240 .12 \quad 10.856$ < 2e-16 *** $\begin{array}{llllll}\text { sexMale } & 4349.37 & 3875.39 & 1.122 & 0.26242\end{array}$ $\begin{array}{llrrr}\text { yrs.since.phd } & 61.01 & 127.01 & 0.480 & 0.63124\end{array}$

Signif. codes:
(‘***' 0.001 ‘**’ 0.01 ‘*’ 0.05 '.’ 0.1 ' ' 1
Residual standard error: 22660 on 391 degrees of freedom Multiple R-squared: 0.4472, Adjusted R-squared: 0.4401 F-statistic: 63.27 on 5 and $391 \mathrm{DF}, \mathrm{p}$-value: < 2.2e-16

Question: Interpretation of the slopes of these dummy variables (e.g. $\hat{\beta}_{\text {rankAssocProf }}$)? Interpretation of the intercept?

Model Fit for Assistant Professors

Multiple Linear
Regression VI
CLEMS

Regression with
Both Quantitative Both Quantitative
and Qualitative and Qualitative
Predictors

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Model Fit for Associate Professors

$\operatorname{lm}($ salary \sim sex $*$ yrs.since.phd)

Multiple Linear Multiple Linear
Regression VI
CLEMS\%
Regression with
Both Quantitative Both Quantiative
and Qualitative and Qualitativ
Predictors

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Polynomial Regression
Suppose we would like to model the relationship between response Y and a predictor X as a $p_{\text {th }}$ degree polynomial in X :

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\beta_{2} X_{i}^{2}+\cdots+\beta_{p} X_{i}^{p}+\varepsilon
$$

We can treat polynomial regression as a special case of multiple linear regression. In specific, the design matrix takes the following form:

$$
\boldsymbol{X}=\left(\begin{array}{ccccc}
1 & X_{1} & X_{1}^{2} & \cdots & X_{1}^{p} \\
1 & X_{2} & X_{2}^{2} & \cdots & X_{2}^{p} \\
\vdots & \cdots & \ddots & \vdots & \vdots \\
1 & X_{n} & X_{n}^{2} & \cdots & X_{n}^{p}
\end{array}\right)
$$

Multiple Linear
Regression VI
CLEMS

Rogression with
Both Quantitative
and Qualtative
Predictors
Polynomial
Polynomial
Regression

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Polynomial Regression Fits

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

