Lecture 14

Categorical Data Analysis II
Text: Chapter 10

STAT 8020 Statistical Methods II

October 8, 2020

Whitney Huang
Clemson University
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
We (do/do not) have enough statistical evidence to conclude that (H_{a} in words) at α significant level.

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Recap: Inference for p

- Point estimate:

$$
\hat{p}=\frac{x}{n}
$$

where x is the number of "successes" in a sample with sample size n, and the probability of success, p, is the parameter of interest

- $100(1-\alpha) \%$ confidence interval:

$$
\hat{p} \pm z_{\alpha / 2} \sqrt{\frac{(\hat{p})(1-\hat{p})}{n}}
$$

- Hypothesis Testing:
$H_{0}: p=p_{0}$ vs. $H_{a}: p>$ or \neq or $<p_{0}$

$$
z^{*}=\frac{\hat{p}-p_{0}}{\sqrt{\frac{p_{0}\left(1-p_{0}\right)}{n}}}
$$

Under $H_{0}: p=p_{0}, \quad z^{*} \sim \mathrm{~N}(0,1)$

Another $\mathbf{C l}$ for p : Wilson Score Confidence Interval

- The actual coverage probability of $100(1-\alpha) \% \mathrm{Cl}$ $\hat{p} \pm z_{\alpha / 2} \sqrt{\frac{(\hat{p})(1-\hat{p})}{n}}$ is usually falls below $(1-\alpha) \circledast$
- E.B. Wilson proposed one solution in 1927 Idea: Solving $\frac{p-\hat{p}}{\sqrt{\frac{p(1-p)}{n}}}= \pm z_{\alpha / 2}$ for p

$$
\Rightarrow(p-\hat{p})^{2}=z_{\alpha / 2}^{2} \frac{p(1-p)}{n}
$$

100(1- α)\% Wilson Score Confidence Interval:

$$
\frac{X+\frac{z_{\alpha / 2}^{2}}{2}}{n+z_{\alpha / 2}^{2}} \pm \frac{z_{\alpha / 2}}{n+z_{\alpha / 2}^{2}} \sqrt{\frac{X(n-X)}{n}+\frac{z_{\alpha / 2}^{2}}{4}}
$$

Example

Suppose we would like to estimate p, the probability of being vegetarian (for all the CU student). We take a sample with sample size $n=25$ and none of them are vegetarian (i.e., $x=0$). Construct a $95 \% \mathrm{Cl}$ for p.

Categorical Dat Analysis II CLEMSets

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Rule of Three: An Approximate $95 \% \mathbf{C l}$ for p When $\hat{p}=0$ or 1
When $\hat{p}=0$, we have

$$
\hat{p} \pm z_{\alpha / 2} \sqrt{\frac{(\hat{p})(1-\hat{p})}{n}}=0 \pm z_{\alpha / 2} \times 0=(0,0)
$$

Similarly, when $\hat{p}=1$, we have

$$
\hat{p} \pm z_{\alpha / 2} \sqrt{\frac{(\hat{p})(1-\hat{p})}{n}}=1 \pm z_{\alpha / 2} \times 0=(1,1)
$$

These Wald Cls degenerate to a point, which do not reflect the estimation uncertainty. Here we could apply the rule of three to approximate $95 \% \mathrm{Cl}$:
$(0,3 / n)$,
if $\hat{p}=0$
$(1-3 / n, 1)$,
if $\hat{p}=1$

Comparing Two Population Proportions p_{1} and p_{2}

- We often interested in comparing two groups, e.g., does a particular treatment increase the survival probability for cancer patients ?
- We would like to infer $p_{1}-p_{2}$, the difference between two population proportions \Rightarrow point estimate, interval estimate, hypothesis testing

Notation

- Parameters
- p_{1}, p_{2} : population proportions
- $p_{1}-p_{2}$: the difference between two population proportions

- Sample Statistics

- n_{1}, n_{2} : sample sizes
- $\hat{p}_{1}=\frac{x_{1}}{n_{1}}, \hat{p}_{2}=\frac{x_{2}}{n_{2}}$: sample proportions

$$
\begin{aligned}
\Rightarrow & \hat{p}_{1}-\hat{p}_{2}=\frac{x_{1}}{n_{1}}-\frac{x_{2}}{n_{2}} \\
& \operatorname{se}\left(\hat{p}_{1}-\hat{p}_{2}\right)=\sqrt{\frac{\left(\hat{p}_{1}\right)\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\left(\hat{p}_{2}\right)\left(1-\hat{p}_{2}\right)}{n_{2}}}
\end{aligned}
$$

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Point/Interval Estimation for $p_{1}-p_{2}$

- Point estimate:

$$
\hat{p}_{1}-\hat{p}_{2}=\frac{X_{1}}{n_{1}}-\frac{X_{2}}{n_{2}}
$$

- 100(1- α) \% CI based on CLT:

$$
\hat{p}_{1}-\hat{p}_{2} \pm z_{\alpha / 2} \sqrt{\frac{\left(\hat{p}_{1}\right)\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\left(\hat{p}_{2}\right)\left(1-\hat{p}_{2}\right)}{n_{2}}}
$$

Hypothesis Testing for $p_{1}-p_{2}$

- State the null and alternative hypotheses:

$$
H_{0}: p_{1}-p_{2}=0 \text { vs. } H_{a}: p_{1}-p_{2}>\text { or } \neq \text { or }<0
$$

(2) Compute the test statistic:

$$
z_{o b s}=\frac{\hat{p}_{1}-\hat{p}_{2}}{\sqrt{\frac{\bar{p}(1-\bar{p})}{n_{1}}+\frac{\bar{p}(1-\bar{p})}{n_{2}}}},
$$

where $\bar{p}=\frac{x_{1}+x_{2}}{n_{1}+n_{2}}$
(3) Make the decision of the test:

Rejection Region/ P-Value Methods
© Draw the conclusion of the test
We (do/do not) have enough statistical evidence to conclude that (H_{a} in words) at $\alpha \%$ significant level.

Example

A Simple Random Simple of 100 CU graduate students is taken and it is found that 79 "strongly agree" that they would recommend their current graduate program. A Simple Random Simple of 85 USC graduate students is taken and it is found that 52 "strongly agree" that they would recommend their current graduate program. At 5% level, can we conclude that the proportion of "strongly agree" is higher at CU?

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Categorical Data Analysis II CLEMS*

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Binomial Experiments and Inference for p

- Fixed number of n trials (sample size), each trial is an independent event (simple random sample)
- Binary outcomes ("success/failure"), where the probability of success, p, for each trial is constant
- The number of successes $X \sim \operatorname{Bin}(n, p)$

We use a random sample x to infer p, the population proportion, using $\hat{p}=\frac{x}{n}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Multinomial Experiments and Inference for

$\boldsymbol{p}=\left(p_{1}, \cdots, p_{K}\right)$

- Fixed number of n trials, each trial is an independent event
- K possible outcomes, each with probability $p_{k}, k=1, \cdots, K$ where $\sum_{k=1}^{K} p_{k}=1$
- $\left(X_{1}, X_{2}, \cdots, X_{K}\right) \sim \operatorname{Multi}\left(n, p_{1}, p_{2}, \cdots, p_{K}\right)$

We use a random sample $\boldsymbol{x}=\left(x_{1}, x_{2}, \cdots, x_{K}\right)$ to infer $\left\{p_{k}\right\}_{k=1}^{K}$, the event probabilities

Question: How many parameters here?

Example: Multinomial Probability

Suppose that in a three-way election for a large country, candidate 1 received 20% of the votes candidate 2 received 35% of the votes, and candidate 3 received 45% of the votes. If ten voters are selected randomly, what is the probability that there will be exactly two supporter for candidate 1 , three supporters for candidate 2 and five supporters for candidate 3 in the sample?

$$
\mathrm{P}\left(X_{1}=2, X_{2}=3, X_{3}=5\right)=\frac{10!}{2!3!5!}(0.2)^{2}(0.35)^{3}(0.45)^{5} \approx 0.08
$$

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

If we randomly select ten voters, two supporter for candidate 1, three supporters for candidate 2 and five supporters for candidate 3 in the sample. What would our best guess for the population proportion each candidate would received?

Pearson's χ^{2} Test

- The Hypotheses:
$H_{0}: p_{1}=p_{1,0} ; p_{2}=p_{2,0} ; \cdots, p_{K}=p_{K, 0}$
H_{a} : At least one is different
- The Test Statistic:

$$
\chi_{\star}^{2}=\sum_{k=1}^{K} \frac{\left(O_{k}-E_{k}\right)^{2}}{E_{k}},
$$

where O_{k} is the observed frequency for the $k_{t h}$ event and E_{k} is the expected frequency under H_{0}

- The Null Distribution: $\chi_{\star}^{2} \sim \chi_{d f=K-1}^{2}$
- Assumption: $n p_{k}>5, k=1, \cdots, K$

chi-square

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example: Testing Mendel's Theories (pp 22-23, "Categorical

Data Analysis" 2nd Ed by Alan Agresti)
"Among its many applications, Pearson's test was used in genetics to test Mendel's theories of natural inheritance. Mendel crossed pea plants of pure yellow strain (dominant strain) plants of pure green strain. He predicted that second generation hybrid seeds would be 75% yellow and 25% green One experiment produced $n=8023$ seeds, of which $X_{1}=6022$ were yellow and $X_{2}=2001$ were green."

Use Pearson's χ^{2} test to assess Mendel's hypothesis.
ategorical Da Analysis II
CLEMSet?

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

An Example of Bivariate Categorical Data

A psychologist is interested in whether or not handedness is related to gender. She collected data on handedness for 100 individuals and the data set is summarized in the table below

	Right-handed	Left-handed	Total
Males	43	9	52
Females	44	4	48
Total	87	13	100

- Grand total: 100
- Marginal total for males: 52
- Marginal total for females: 48
- Marginal total for right-handed: 87
- Marginal total for left-handed: 13

This is an example of a contingency table

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Contingency Tables

- Bivariate categorical data is typically displayed in a contingency table
- The number in each cell is the frequency for each category level combination
- Contingency table for the previous example

	Right-handed	Left-handed	Total
Males	43	9	52
Females	44	4	48
Total	87	13	100

For a given contingency table, we want to test if two variables have a relationship or not? $\Rightarrow \chi^{2}$-Test
χ^{2}-Test for Independence

- Define the null and alternative hypotheses:
H_{0} : there is no relationship between the 2 variables
H_{a} : there is a relationship between the 2 variables
(2) (If necessary) Calculate the marginal totals, and the grand total
(3) Calculate the expected cell frequencies:

Expected cell frequency $=\frac{\text { Row Total } \times \text { Column Total }}{\text { Grand Total }}$

- Calculate the partial χ^{2} values (χ^{2} value for each cell of the table):

Partial χ^{2} value $=\frac{(\text { observed }- \text { expected })^{2}}{\text { expected }}$
χ^{2}-Test for Independence Cont'd
(0) Calculate the χ^{2} statistic:

$$
\chi_{o b s}^{2}=\sum \text { partial } \chi^{2} \text { value }
$$

(6) Calculate the degrees of freedom ($d f$)

$$
d f=(\# \text { of rows }-1) \times(\# \text { of columns }-1)
$$

O Find the χ^{2} critical value with respect to α
(3) Draw the conclusion:

Reject H_{0} if $\chi_{o b s}^{2}$ is bigger than the χ^{2} critical value \Rightarrow There is an statistical evidence that there is a relationship between the two variables at α level

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Categorical Da Analysis II

CLEMSes

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Handedness/Gender Example Revisited

	Right-handed	Left-handed	Total
Males	43	9	52
Females	44	4	48
Total	87	13	100

Is the percentage left-handed men in the popula tion different from the percentage of left-handed women?

Categorical Dat Analysis II
CLEMS \% \%

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example Cont'd
(3) Calculate the expected cell counts

(Expected)	Married	Divorced
Married	$\frac{1068 \times 1036}{2000}=553.224$	$\frac{1068 \times 964}{2000}=514.776$
Divorced	$\frac{9321036}{2000}=482.776$	$\frac{932 \times 64}{2000}=449.224$

- Calculate the partial χ^{2} values

partial χ^{2}	Married	Divorced
Married	$\frac{(581-553.224)^{2}}{553.224}=1.39$	$\frac{(487-514.776)^{2}}{514.776}=1.50$
Divorced	$\frac{(455-48.776)^{2}}{482.776}=1.60$	$\frac{(477-499224)^{2}}{449.224}=1.72$

(6) Calculate the χ^{2} statistic
$\chi^{2}=1.39+1.50+1.60+1.72=6.21$
(6) Calculate the degrees of freedom ($d f$)

The $d f$ is $(2-1) \times(2-1)=1$

- Find the χ^{2} critical value with respect to α from the χ^{2} table
The $\chi_{\alpha=0.1, d f=1}^{2}=2.71$
(8) Draw your conclusion:

We reject H_{0} and conclude that there is a relationship between parents' marital status and childrens' marital status.

Example

The following contingency table contains enrollment data for a random sample of students from several colleges at Purdue University during the 2006-2007 academic year. The table lists the number of male and female students enrolled in each college. Use the two-way table to conduct a χ^{2} test from beginming to end. Use $\alpha=.01$

(Observed)	Female	Male	Total
Liberal Arts	378	262	640
Science	99	175	274
Engineering	104	510	614
Total	581	947	1528

Example Cont'd

(Expected)	Female	Male
Liberal Arts	$\frac{640 \times 581}{1528}=243.35$	$\frac{640 \times 947}{1528}=396.65$
Science	$\frac{274 \times 881}{1528}=104.18$	$\frac{274 \times 947}{1528}=169.82$
Engineering	$\frac{614 \times 581}{1528}=233.46$	$\frac{614 \times 947}{1528}=380.54$

partial χ^{2}	Female	Male
Lib Arts	$\frac{(378-243.35)^{2}}{243.35}=74.50$	$\frac{(262-396.65)^{2}}{396.65}=45.71$
Sci	$\frac{(99-104.18)^{2}}{104.18}=0.26$	$\frac{(175-169.82)^{2}}{169.82}=0.16$
Eng	$\frac{(104-233.46)^{2}}{233.46}=71.79$	$\frac{(510-390.54)^{2}}{380.54}=44.05$

$\chi^{2}=74.50+45.71+0.26+0.16+71.79+44.05=236.47$
The $d f=(3-1) \times(2-1)=2 \Rightarrow$ Critical value
$\chi_{\alpha=.01, d f=2}^{2}=9.21$
Therefore we reject H_{0} (at .01 level) and conclude that there is a relationship between gender and major.

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

R Code \& Output
table <- matrix(c(378, 99, 104,
$262,175,510), 3,2)$
colnames(table) <- c("Female", "Male")
rownames(table) <- c("Liberal Arts", "Science",
"Engineering")
table

	Female Male	
Liberal Arts	378	262
Science	99	175
Engineering	104	510

chisq.test(table)
Pearson's Chi-squared test
data: table
X-squared $=236.47, \mathrm{df}=2, \mathrm{p}$-value $<$
2.2e-16

Take Another Look at the Example

(Proportion)	Female	Male	Total
Liberal Arts	$.59(.65)$	$.41(.28)$	$(.42)$
Science	$.36(.17)$	$.64(.18)$	$(.18)$
Engineering	$.17(.18)$	$.83(.54)$	$(.40)$
Total	.38	.62	1

Rejecting $H_{0} \Rightarrow$ conditional probabilities are not consistent with marginal probabilities

Example: Comparing Two Population Proportions

Let $p_{1}=\mathrm{P}($ Female \mid Liberal Arts $)$ and $p_{2}=\mathrm{P}($ Female \mid Science $)$.
$n_{1}=640, X_{1}=378, n_{2}=274, X_{2}=99$

- $H_{0}: p_{1}-p_{2}=0$ vs. $H_{a}: p_{1}-p_{2} \neq 0$
- $z_{\text {obs }}=\frac{.59-.36}{\sqrt{\frac{.52 \times .48}{640}+\frac{.5 \times .48}{274}}}=6.36>z_{0.025}=1.96$
- We do have enough statistical evidence to conclude that $p_{1} \neq p_{2}$ at $.05 \%$ significant level.

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

R Code \& Output
prop.test $(x=c(378,99), n=c(640,274)$, correct = F)

2 -sample test for equality of proportions without continuity correction
data: $c(378,99)$ out of $c(640,274)$
X-squared $=40.432, \mathrm{df}=1, \mathrm{p}$-value $=$
$2.036 \mathrm{e}-10$
alternative hypothesis: two.sided
95 percent confidence interval:
0.16085240 .2977699
sample estimates:
prop 1 prop 2
0.59062500 .3613139

Example: Test for Homogeneity
Let $p_{1}=\mathrm{P}($ Liberal Arts $), p_{2}=\mathrm{P}($ Science $)$, $p_{3}=\mathrm{P}($ Engineering $)$

- The Hypotheses:
$H_{0}: p_{1}=p_{2}=p_{3}=\frac{1}{3}$
$H_{a}:$ At least one is different
- The Test Statistic:

$$
\begin{aligned}
\chi_{o b s}^{2} & =\frac{(640-509.33)^{2}}{509.33}+\frac{(274-509.33)^{2}}{509.33}+\frac{(614-509.33)^{2}}{509.33} \\
& =33.52+108.73+21.51=163.76>\chi_{.05, d f=2}^{2}=5.99
\end{aligned}
$$

- Rejecting H_{0} at .05 level

Notes

\qquad
\qquad
\qquad
\qquad
X-squared $=163.76, \mathrm{df}=2, \mathrm{p}$-value
< 2.2e-16

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
chisq.test $(x=c(640,274,614), p=\operatorname{rep}(1 / 3,3))$
Chi-squared test for given probabilities
data: $c(640,274,614)$

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

