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Aspirin Use and Heart Attack

The table below is from a report on the relationship
between aspirin use and heart attract by the Physicians’
Health Study Research Group at Harvard Medical School
(New Engl. J. Med. 318: 262-264 ,1988).

Heart Attack
Group Yes No Total

Placebo 189 10,845 11,034
Aspirin 104 10,933 11,037

Here we want to know if the use of aspirin effectively
reduces the heart attack rate. To do so we are going to
introduce relative risk and odds ratio.
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Relative Risk and Odds Ratio

The relative risk (RR) is defined to be the ratio

RR =
p1
p2
,

where pi is the probability of “success” for the ith group.

The odds ratio (θ) is defined as

θ =
Ω1

Ω2
=
p1/(1− p1)
p2/(1− p2)

,

where Ω is the odds for the ith group.
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Aspirin Use and Heart Attack Revisited: Inference for θ

Heart Attack
Group Yes No Total

Placebo 189 10,845 11,034
Aspirin 104 10,933 11,037

Point Estimation:

θ̂ =
p̂1/(1− p̂1)
p̂2/(1− p̂2)

=
n11 × n22
n12 × n21

,

where ni1 is the number of successes and ni2 is the
number of the failures of the ith group. For this example,
we have

θ̂ =
189× 10933

10845× 104
= 1.83

⇒ the odds of heart attack for those taking placebo was
1.83 times the odds of those taking aspiring.
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Inference for θ Cont’d

Interval Estimation:
Confidence interval is constructed in the nature log scale.
We have the Wald confidence interval for log θ

log θ̂ + zα/2σ̂log θ̂,

where the estimated standard error for log θ̂ is

σ̂log θ̂ =

(
1

n11
+

1

n12
+

1

n21
+

1

n22

)1/2

.

Exponentiating its end points (i.e., the lower limit and the
upper limit) provides a confidence interval for θ.
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Aspirin Use and Heart Attack: Confidence Interval for θ

Suppose we want to construct a 95% CI for θ:

log θ̂ = 0.6054

σ̂log θ̂ =
(

1
189 + 1

10845 + 1
104 + 1

10933

)1/2
= 0.1228

Margin of error:
z0.025 × σ̂log θ̂ = 1.96× 0.1228 = 0.2407

CI on the nature log scale:
[0.6054− 0.2407, 0.6054 + 0.2407] = [0.3647, 0.8461]

CI on the original scale:
[exp(0.3647), exp(0.8461)] = [1.4401, 2.3305]
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Handedness vs. Gender Example Revisited

Here we’d like to use the table below to infer the male to
female odds ratio of left-handedness

Right-handed Left-handed Total
Males 43 9 52

Females 44 4 48
Total 87 13 100

Find the point estimate

Construct a 95% confidence interval
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Logistic Regression
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A Motivating Example: Horseshoe Crab Malting
[Brockmann, 1996, Agresti, 2013]

Source: https://www.britannica.com/story/
horseshoe-crab-a-key-player-in-ecology-medicine-and-more

In the rest of today’s lecture, we are going to use this data
set to illustrate logistic regression. The response variable
is y: whether there are males clustering around the
female
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Let’s Fit a Linear Regression
ŷ = β̂0 + β̂1weight
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Fitting a linear regression to binary response is
problematic. (Why?) We need a different statisti-
cal model to describe the data
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Logistic Regression

Let P(Y = 1) = π ∈ [0, 1], and x be the predictor (weight
in the previous example). In SLR we have

π(x) = β0 + β1x,

which will lead to invalid estimate of π (i.e., > 1 or < 0).

Logistic Regression

log(
π

1− π
) = β0 + β1x.

log( π
1−π ): the log-odds or the logit

π(x) = eβ0+β1x

1+eβ0+β1x
∈ (0, 1)

Notes
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Logistic Regression Fit

π̂(x) = eβ̂0+β̂1x

1+eβ̂0+β̂1x
, β̂0 = −3.6947(0.8802),

β̂1 = 1.8151(0.3767).
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Properties

Similar to SLR, Sign of β1 indicates whether π(x) ↑ or
↓ as x ↑

If β1 = 0, then π(x) = eβ0/(1 + eβ0) is a constant w.r.t
x (i.e., π does not depend on x)

Curve can be approximated at fixed x by straight line
to describe rate of change: dπ(x)

dx = β1π(x)(1− π(x))

π(−β0/β1) = 0.5, and 1/β1 ≈ the distance of x values
with π(x) = 0.5 and π(x) = 0.75 (or π(x) = 0.25)
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Odds Ratio Interpretation

Recall log( π(x)
1−π(x)) = β0 + β1x, we have the odds

π(x)

1− π(x)
= exp(β0 + β1x).

If we increase x by 1 unit, the the odds becomes

exp(β0 + β1(x+ 1)) = exp(β1)× exp(β0 + β1x).

⇒ Odds at x+1
Odds at x = exp(β1), ∀x

Example: In the horseshoe crab example, we have
β̂1 = 1.8151⇒ e1.8151 = 6.14⇒ Estimated odds of
satellite multiply by 6.1 for 1 kg increase in weight.

Notes
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Parameter Estimation
In logistic regression we use maximum likelihood
estimation to estimate the parameters:

Statistical model: Yi ∼ Bernoulli(π(xi)) where
π(xi) = exp(β0+β1xi)

1+exp(β0+β1xi)
.

Likelihood function: We can write the joint
probability density of the data {xi, yi}ni=1 as

n∏
i=1

π(xi)
yi(1− π(xi))

(1−yi).

We treat this as a function of parameters (β0, β1)
given data.

Maximum likelihood estimate: The maximizer
β̂0, β̂1 is the maximum likelihood estimate (MLE).
This maximization can only be solved numerically.
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Horseshoe Crab Logistic Regression Fit

Relative Risk,
Odds Ratio, and

Logistic
Regression

Relative Risk and
Odds Ratio

Logistic
Regression

17.18

Inference: Confidence Interval

A 95% confidence interval of the parameter βi is

β̂i ± z0.025 × SEβ̂i , i = 0, 1

Horseshoe Crab Example
A 95% (Wald) confidence interval of β1 is

1.8151± 1.96× 0.3767 = [1.077, 2.553]

Therefore a 95% CI of eβ1 , the multiplicative effect on
odds of 1-unit increase in x, is

[e1.077, e2.553] = [2.94, 12.85]

Notes
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Inference: Hypothesis Test

Null and Alternative Hypotheses:

H0 : β1 = 0⇒ Y is independent of X ⇒ π(x) is a constant
Ha : β1 6= 0

Test Statistics:

zobs =
β̂1

SEβ̂1
=

1.8151

0.3767
= 4.819.

P-value = 1.45× 10−6

We have sufficient evidence that weight has pos-
itive effect on π, the probability of having satellite
male horseshoe crabs
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