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Q Logistic Regression

Aspirin Use and Heart Attack

The table below is from a report on the relationship
between aspirin use and heart attract by the Physicians’
Health Study Research Group at Harvard Medical School
(New Engl. J. Med. 318: 262-264 ,1988).

Heart Attack
Group | Yes No Total
Placebo | 189 10,845 | 11,034
Aspirin | 104 10,933 | 11,037

Here we want to know if the use of aspirin effectively
reduces the heart attack rate. To do so we are going to
introduce relative risk and odds ratio.
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The relative risk (RR) is defined to be the ratio i : :

Relative Risk and
Odds Ratio

RR =21

P2

where p; is the probability of “success” for the it group.

The odds ratio (0) is defined as

Y p/(L-p1)

T pe/(-p2)

where Q is the odds for the it" group.
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Heart Attack CLEMS#N
Group | Yes No Total ‘ ' :
Placebo | 189 10,845 | 11,034 R aTt
Aspirin | 104 10,933 | 11,037
Point Estimation:
é: ]51/(1 7[3]) _ nip X ngo
P2/(L—p2)  ni2 X ngy’
where n;; is the number of successes and n;; is the
number of the failures of the i" group. For this example,
we have 189 x 10933
~ X .
o= 10845 x 104 1.83
= the odds of heart attack for those taking placebo was
1.83 times the odds of those taking aspiring.
Inference for 6 Cont'd NG
T Notes
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Interval Estimation: s

d

Confidence interval is constructed in the nature log scale.  feaie fec
We have the Wald confidence interval for log 6 e

log 6 + 2201, 4>

where the estimated standard error for log 6 is

R LR S S 1/2
G = — = .
log nie M2 n21 N2

Exponentiating its end points (i.e., the lower limit and the

upper limit) provides a confidence interval for 6.




Aspirin Use and Heart Attack: Confidence Interval for ¢

Suppose we want to construct a 95% Cl for 0:

0 log = 0.6054

- _ (.1 1 1 1 \1/2 _
Q Ol = (m t s t s T 10933) = 0.1228

@ Margin of error:
20.025 X (3'10gé =1.96 x 0.1228 = 0.2407

@ Cl on the nature log scale:
[0.6054 — 0.2407,0.6054 + 0.2407] = [0.3647,0.8461]

o Cl on the original scale:
[exp(0.3647), exp(0.8461)] = [1.4401, 2.3305]

Handedness vs. Gender Example Revisited

Here we’d like to use the table below to infer the male to

female odds ratio of left-handedness

Right-handed | Left-handed | Total
Males 43 9 52
Females 44 4 48
Total 87 13 100

o Find the point estimate

@ Construct a 95% confidence interval
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A Motivating Example: Horseshoe Crab Malting

[Brockmann, 1996, Agresti, 2013]
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Source: https://www.britannica.com/story/

horseshoe-crab-a-key-player—-in-ecology-medicine-and-more

In the rest of today’s lecture, we are going to use this data
set to illustrate logistic regression. The response variable
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Let’s Fit a Linear Regression
9 = Bo+ Piweight
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Fitting a linear regression to binary response is
problematic. (Why?) We need a different statisti-

cal model to describe the data

Logistic Regression

LetP(Y =1) =x € [0,1], and = be the predictor (weight
in the previous example). In SLR we have

7T(£L) = ﬂo + ﬁlw7

which will lead to invalid estimate of = (i.e., > 1 or < 0).

Logistic Regression

log(~——) = By + Bra.

1—-7
@ log(1%-): the log-odds or the logit

ePBot+Biz

o m(z) = (LR € (0,1)
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Logistic Regression Fit Felative sk
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o Similar to SLR, Sign of 3, indicates whether = (z) 1 or
lasz 1

o If 1 = 0, then n(z) = 0 /(1 + 0) is a constant w.r.t

z (i.e., m does not depend on z)

@ Curve can be approximated at fixed z by straight line

to describe rate of change: %) — g7 (z)(1 — 7 (x))

o w(—pBy/B1) = 0.5, and 1/31 ~ the distance of = values

with 77(z) = 0.5 and 7(x) = 0.75 (or w(z) = 0.25)
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Odds Ratio Interpretation TR,
O Cogtts Notes
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Recall log(lfif()z)) = Bp + B1z, we have the odds CLEMS@N
m(x)
——— =exp(fo + fix).
) = P+ B)

If we increase x by 1 unit, the the odds becomes

exp(Bo + B1(z + 1)) = exp(B1) x exp(Bo + S1).

Odds at z+1 __
= “Odgeaty = exp(B1), Vo

Example: In the horseshoe crab example, we have

B1 = 1.8151 = 18151 = 6.14 = Estimated odds of
satellite multiply by 6.1 for 1 kg increase in weight.
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Parameter Estimation o,

In logistic regression we use maximum likelihood Rt Notes
estimation to estimate the parameters: CLEMS@N
o Statistical model: Y; ~ Bernoulli(7(z;)) where ‘ ' :
(J") — _exp(Bot+pri)
K T+exp(Bo+B1zi)

o Likelihood function: We can write the joint

probability density of the data {x;,y;}-, as

[T e 1 )00
i=1

We treat this as a function of parameters (5, 51)
given data.

@ Maximum likelihood estimate: The maximizer

Bo, A1 is the maximum likelihood estimate (MLE).
This maximization can only be solved numerically.

1716

Horseshoe Crab Logistic Regression Fit feiativelnbion
> logitFit <- glm(y ~ weight, data = crab, family = "binomial™) Logistic Notes
> summary(logitFit) Regression

Call: CLEMS@N

glm(formula = y ~ weight, family = "binomial", data = crab)

Deviance Residuals:

Min 1Q Median 3Q Max
-2.1108 -1.0749 0.5426 0.9122 1.6285

Coefficients:
Estimate Std. Error z value Pr(>lzl)
(Intercept) -3.6947 0.8802 -4.198 2.70e-05 ***

weight 1.8151 0.3767  4.819 1.45e-06 ***

Signif. codes:

Q “***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘. 0.1 ¢’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 225.76 on 172 degrees of freedom
Residual deviance: 195.74 on 171 degrees of freedom

AIC: 199.74
Number of Fisher Scoring iterations: 4 1747
Inference: Confidence Interval A,
Cogistie. Notes
Regression
A 95% confidence interval of the parameter j; is CLEMS@

B+ 2002 X SE, i=0,1

Horseshoe Crab Example

A 95% (Wald) confidence interval of 3 is

1.8151 £ 1.96 x 0.3767 = [1.077,2.553]

Therefore a 95% Cl of €1, the multiplicative effect on

odds of 1-unit increase in z, is

("7, e>55] = [2.94, 12.85]
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Inference: Hypothesis Test DZZ‘E‘;%Z?;T@ Notes

Regression

Null and Alternative Hypotheses:
CLEMS@N

Hy : 1 =0 =Y isindependent of X = =(z) is a constant

Hy: 81 #0

Test Statistics:

B 18151

= 4.819.

Zobs =

SE;  0.3767

P-value = 1.45 x 1076

We have sufficient evidence that weight has pos-

itive effect on 7, the probability of having satellite
male horseshoe crabs
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