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A Motivating Example: Horseshoe Crab Malting
[Brockmann, 1996, Agresti, 2013]

Source: https://www.britannica.com/story/
horseshoe-crab-a-key-player-in-ecology-medicine-and-more

In the rest of today’s lecture, we are going to use this data
set to illustrate logistic regression. The response variable
is y: whether there are males clustering around the
female
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Logistic Regression

Let P(Y = 1) = π ∈ [0, 1], and x be the predictor (weight
in the previous example). In SLR we have

π(x) = β0 + β1x,

which will lead to invalid estimate of π (i.e., > 1 or < 0).

Logistic Regression

log(
π

1− π
) = β0 + β1x.

log( π
1−π ): the log-odds or the logit

π(x) = eβ0+β1x

1+eβ0+β1x
∈ (0, 1)

Notes

Notes

Notes

https://www.britannica.com/story/horseshoe-crab-a-key-player-in-ecology-medicine-and-more
https://www.britannica.com/story/horseshoe-crab-a-key-player-in-ecology-medicine-and-more
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Logistic Regression Fit

π̂(x) = eβ̂0+β̂1x

1+eβ̂0+β̂1x
, β̂0 = −3.6947(0.8802),

β̂1 = 1.8151(0.3767).
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Properties

Similar to SLR, Sign of β1 indicates whether π(x) ↑ or
↓ as x ↑

If β1 = 0, then π(x) = eβ0/(1 + eβ0) is a constant w.r.t
x (i.e., π does not depend on x)

Curve can be approximated at fixed x by straight line
to describe rate of change: dπ(x)

dx = β1π(x)(1− π(x))

π(−β0/β1) = 0.5, and 1/β1 ≈ the distance of x values
with π(x) = 0.5 and π(x) = 0.75 (or π(x) = 0.25)
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Odds Ratio Interpretation

Recall log( π(x)
1−π(x)) = β0 + β1x, we have the odds

π(x)

1− π(x)
= exp(β0 + β1x).

If we increase x by 1 unit, the the odds becomes

exp(β0 + β1(x+ 1)) = exp(β1)× exp(β0 + β1x).

⇒ Odds at x+1
Odds at x = exp(β1), ∀x

Example: In the horseshoe crab example, we have
β̂1 = 1.8151⇒ e1.8151 = 6.14⇒ Estimated odds of
satellite multiply by 6.1 for 1 kg increase in weight.

Notes

Notes

Notes
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Parameter Estimation
In logistic regression we use maximum likelihood
estimation to estimate the parameters:

Statistical model: Yi ∼ Bernoulli(π(xi)) where
π(xi) =

exp(β0+β1xi)
1+exp(β0+β1xi)

.

Likelihood function: We can write the joint
probability density of the data {xi, yi}ni=1 as

n∏
i=1

π(xi)
yi(1− π(xi))(1−yi).

We treat this as a function of parameters (β0, β1)
given data.

Maximum likelihood estimate: The maximizer
β̂0, β̂1 is the maximum likelihood estimate (MLE).
This maximization can only be solved numerically.
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Horseshoe Crab Logistic Regression Fit
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Inference: Confidence Interval

A 95% confidence interval of the parameter βi is

β̂i ± z0.025 × SEβ̂i , i = 0, 1

Horseshoe Crab Example
A 95% (Wald) confidence interval of β1 is

1.8151± 1.96× 0.3767 = [1.077, 2.553]

Therefore a 95% CI of eβ1 , the multiplicative effect on
odds of 1-unit increase in x, is

[e1.077, e2.553] = [2.94, 12.85]

Notes

Notes

Notes
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Inference: Hypothesis Test

Null and Alternative Hypotheses:

H0 : β1 = 0⇒ Y is independent of X ⇒ π(x) is a constant
Ha : β1 6= 0

Test Statistics:

zobs =
β̂1

SEβ̂1
=

1.8151

0.3767
= 4.819.

P-value = 1.45× 10−6

We have sufficient evidence that weight has pos-
itive effect on π, the probability of having satellite
male horseshoe crabs
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Diagnostic: Raw Residual Plot
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Diagnostic: Binned Residual Plot
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Model Selection
Notes

Notes

Notes


