Lecture 1

Introduction

STAT 8020 Statistical Methods II August 20, 2020

Whitney Huang Clemson University

Who is the instructor?

Notes

Notes

Who am I?

- Second year Assistant Professor of Applied Statistics and Data Science
- Born in Laramie, Wyoming, grew up in Taiwan

- With a B.S. in Mechanical Engineering, switched to Statistics in graduate school
- Got a Ph.D. (Statistics) in 2017 at Purdue University.

CLEMS N
Who is the instructor?

Notes			

How to reach me?

• Email: wkhuang@clemson.edu

• Office: O-221 Martin Hall

• Office Hours: TR 11:00am – 12:00pm and by

appointment

Notes

Class Policies / Schedule

Notes			

Logistics

- We will meet TR 12:30pm 1:45pm via Zoom
- There will be three online exams and a (comprehensive) online final. The (tentative) dates for the three exams are:
 - Exam I: Sept. 24, Thursday
 - Exam II: Oct. 20, Tuesday
 - Exam II: Nov. 12, Tuesday
 - The **Final Exam** will be given on Wednesday, Dec. 7, 3:00 pm -5:30 pm.
- No classes on Nov. 3 (Fall Break) & 26 (Thanksgiving)

CLEMS#N
Class Policies / Schedule

Notes			

Class Website

CANVAS and my teaching website (link:

https://whitneyhuang83.github.io/STAT8020/Fall2020/stat8020_2020Fall.html)

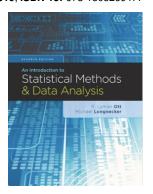
- Course syllabus [Link] / Announcements
- Lecture slides/notes
- Exam schedule
- Data sets
- R code

CLEMS N
Class Policies / Schedule

Notes

Recommended Textbook

An Introduction to Statistical Methods and Data Analysis, 6th Edition. Lyman Ott and Micheal T. Longnecker, Duxbury, 2010; ISBN-13: 978-1305269477



Notes			

Evaluation

• Grade Distribution:

 Exam I:
 25%

 Exam II
 25%

 Exam III
 25%

 Final Exam
 25%

• Letter Grade:

>= 90.00	Α
$88.00\sim89.99$	A-
$85.00\sim87.99$	B+
$80.00\sim84.99$	В
$78.00\sim79.99$	B-
$75.00\sim77.99$	C+
$70.00\sim74.99$	С
$68.00\sim69.99$	C-
<= 67.99	F

CLEMS N
Class Policies / Schedule

Notes			

Tentative Topics and Dates

Part I: Regression Analysis (August 20 – September 24)

- Review of Simple Linear Regression
- Multiple Linear Regression: Statistical Inference;
 Model Selection and Diagnostics
- Regression Models with Quantitative and Qualitative Predictors
- Nonlinear and Non-parametric Regression

Part II: Categorical Data Analysis (September 29 – October 20)

- Review of Inference for Proportions and Contingency Tables
- Relative Risk and Odds Ratio
- Logistic Regression and Poisson Regression

Notes		

Tentative Topics and Dates cont'd

Part III: Experimental Design (October 22 – November 12)

- Introduction to Experimental Design: Principles and Techniques
- Completely randomized Designs, Block Designs, Latin Square Designs, Nested and Split-Plot Designs
- Computer experiments

Part IV: Multivariate, Spatial and Time Series Analysis (November 17 – December 3)

- Discriminate Analysis, Principle Components Analysis, and Cluster Analysis
- Basic of time series and spatial data analysis

Notes

Computing

We will use software to perform statistical analyses. The recommended software for this course are ${\tt JASP}$ and ${\tt R/Rstudio}$

- JASP
 - a free/open-source graphical program for statistical analysis
 - available at https://jasp-stats.org/
- R/ ®Studio
 - a free/open-source programming language for statistical analysis
 - available at https://www.r-project.org/(R); https://rstudio.com/(Rstudio)

You are welcome to use a different package (e.g. SAS, JMP, SPSS, Minitab) if you prefer

CLEMS N
Class Policies / Schedule

Tell us about yourself

CLEMS#N
Tell us about yourself
1.13

Notes		

Tell us about yourself

- Your name
- Degree program
- Your background in Statistics/Computing

CLEMS N
Tell us about yourself

Notes		

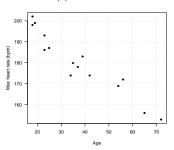
Review of Simple Linear Regression

CLEMS N
Simple Linear Regression

Notes			

What is Regression Analysis?

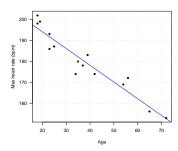
Regression analysis: A set of statistical procedures for estimating the relationship between response variable and predictor variable(s)



We will focus on simple linear regression in the next few lectures

Notes				

Scatterplot: Is Linear Trend Reasonable?



The relationship appears to be linear. What about the **direction** and **strength** of this linear relationship?

> cov(age, maxHeartRate)
[1] -243.9524

> cor(age, maxHeartRate)
[1] -0.9534656

Notes

Simple Linear Regression (SLR)

Y: dependent (response) variable; *X*: independent (predictor) variable

• In SLR we assume there is a linear relationship between *Y* and *Y*:

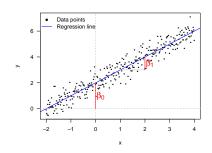
$$Y = \beta_0 + \beta_1 X + \varepsilon$$

- We need to estimate β_0 (intercept) and β_1 (slope)
- We can use the estimated regression equation to
 - make predictions
 - study the relationship between response and predictor
 - control the response
- Yet we need to quantify our estimation uncertainty regarding the linear relationship (will talk about this next time)

CLEMS N
Simple Linear Regression

Notes				

Regression equation: $Y = \beta_0 + \beta_1 X$



- β_0 : E[Y] when X = 0
- β_1 : $E[\Delta Y]$ when X increases by 1

Notes

Assumptions about the Random Error ε

In order to estimate β_0 and β_1 , we make the following assumptions about ε

- \bullet $E[\varepsilon_i] = 0$
- $\bullet \ \operatorname{Var}[\varepsilon_i] = \sigma^2$
- $Cov[\varepsilon_i, \varepsilon_j] = 0, \quad i \neq j$

Therefore, we have

$$\mathrm{E}[Y_i] = eta_0 + eta_1 X_i, \; \mathrm{and} \; \ \ \mathrm{Var}[Y_i] = \sigma^2$$

The regression line $\beta_0 + \beta_1 X$ represents the **condi**tional mean curve whereas σ^2 measures the magnitude of the variation around the regression curve

	E	N	43	S	á	ì	
N	٧	Ε	R	S		Т	0

Notes			

Estimation: Method of Least Square

For the given observations $(x_i, y_i)_{i=1}^n$, choose β_0 and β_1 to minimize the *sum of squared errors*:

$$L(\beta_0, \beta_1) = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

Solving the above minimization problem requires some knowledge from Calculus....

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^n (X_i - \bar{X})^2}$$

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$$

We also need to **estimate** σ^2

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^n (Y_i - \hat{Y}_i)^2}{n-2}$$
, where $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$

ור		F	λ	49	S	1	ì	
N	ĭ	v	E	R	s	٦	Ť	



Properties of Least Squares Estimates

- Gauss-Markov theorem states that in a linear regression these least squares estimators
 - Are unbiased, i.e.,
 - $\bullet \ E[\hat{\beta}_1] = \beta_1; E[\hat{\beta}_0] = \beta_0$
 - $E[\hat{\sigma}^2] = \sigma^2$
 - Have minimum variance among all unbiased linear estimators

Note that we do not make any distributional assumption on ε_i

CLEMS (S)
SLR Parameter Estimation

Notes			

1.22

Example: Maximum Heart Rate vs. Age

The maximum heart rate MaxHeartRate of a person is often said to be related to age Age by the equation:

$$MaxHeartRate = 220 - Age.$$

Suppose we have 15 people of varying ages are tested for their maximum heart rate (bpm) (link to the "dataset": whitneyhuang83.github.io/STAT8010/Data/maxHeartRate.csv)

- Compute the estimates for the regression coefficients
- Compute the fitted values
- lacktriangle Compute the estimate for σ

. . . .

Notes				

Estimate the Parameters β_1 , β_0 , and σ^2

 Y_i and X_i are the Maximum Heart Rate and Age of the i^{th} individual

- To obtain $\hat{\beta}_1$
 - Ompute $\bar{Y} = \frac{\sum_{i=1}^{n} Y_i}{n}$, $\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$
 - ② Compute $Y_i \bar{Y}$, $X_i \bar{X}$, and $(X_i \bar{X})^2$ for each observation
 - **3** Compute $\sum_{i=1}^{n} (X_i \bar{X})(Y_i \bar{Y})$ divived by $\sum_{i=1}^{n} (X_i \bar{X})^2$
- $\hat{\beta}_0$: Compute $\bar{Y} \hat{\beta}_1 \bar{X}$
- \circ $\hat{\sigma}^2$
 - Ocompute the fitted values: $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i, \quad i = 1, \dots, n$
 - ② Compute the **residuals** $e_i = Y_i \hat{Y}_i, \quad i = 1, \dots, n$
 - © Compute the **residual sum of squares (RSS)** = $\sum_{i=1}^{n} (Y_i \hat{Y}_i)^2$ and divided by n-2 (why?)

<u>CLEMS#N</u>
SLR Parameter Estimation

Notes			

Let's Do the Calculations

$$\bar{X} = \sum_{i=1}^{15} \frac{18 + 23 + \dots + 39 + 37}{15} = 37.33$$

$$\bar{Y} = \sum_{i=1}^{15} \frac{202 + 186 + \dots + 183 + 178}{15} = 180.27$$

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^n (X_i - \bar{X})^2} = -0.7977$$

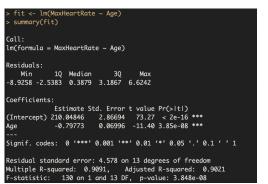
$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X} = 210.0485$$

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^{15} (Y_i - \hat{Y}_i)^2}{13} = 20.9563 \Rightarrow \hat{\sigma} = 4.5778$$

Notes

Let's Double Check

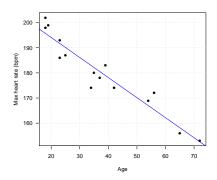
Output from (Studio)



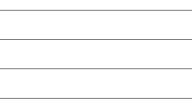
Notes

Notes

Linear Regression Fit



Question: Is linear relationship between max heart rate and age reasonable? ⇒ Residual Analysis



Residuals

 The residuals are the differences between the observed and fitted values:

$$e_i = Y_i - \hat{Y}_i,$$

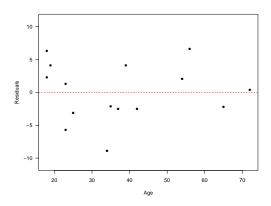
where $\hat{Y}_i = \hat{eta}_0 + \hat{eta}_1 X_i$

- ullet e_i is NOT the error term $arepsilon_i = Y_i \mathrm{E}[Y_i]$
- Residuals are very useful in assessing the appropriateness of the assumptions on ε_i . Recall
 - $E[\varepsilon_i] = 0$
 - $Var[\varepsilon_i] = \sigma^2$
 - $\operatorname{Cov}[\varepsilon_i, \varepsilon_j] = 0, \quad i \neq j$

CLEMS (*)
Residual Analysis

1.28

Maximum Heart Rate vs. Age Residual Plot: ε vs. X



Notes

Notes

Interpreting Residual Plots



Figure: Figure courtesy of Faraway's Linear Models with R (2005, p. 59).

4	S	설	3	V
R	S		T	Y

Who is the instructor?
Class Policies / Schedule
Tell us about yourself
Simple Linear Regression
SLR Parameter Estimation
Residual Analysis

Summary

In this lecture, we reviewed

- Simple Linear Regression: $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$
- Method of Least Square for parameter estimation
- Residual analysis to check model assumptions
 Next time we will talk about
- More on residual analysis
- ② Normal Error Regression Model and statistical inference for $\beta_0,\,\beta_1,\,{\rm and}\,\,\sigma^2$
- Prediction

CLEMS#N
J N I V E R S I T
Residual Analysis

Notes			
Notes			
Nista s			
Notes			