Lecture 20 Poisson Regression II

STAT 8020 Statistical Methods II October 29, 2020

> Whitney Huang Clemson University

Species Diversity on the Galapagos Islands Revisited

Recall we are interested in studying the relationship between the **number** of plant species (Species) and the following geographic variables: Area, Elevation, Nearest, Scruz, Adjacent.

Data: Species D	ivers	ity on	the G	alapa	gos	Islands	;
	Species	Area	Elevation	Nearest	Scruz	Adjacent	
Baltra	58	25.09	346	0.6	0.6	1.84	
Bartolome	31	1.24	109	0.6	26.3	572.33	
Caldwell	3	0.21	114	2.8	58.7	0.78	
Champion	25	0.10	46	1.9	47.4	0.18	
Coamano	2	0.05	77	1.9	1.9	903.82	
Daphne.Major	18	0.34	119	8.0	8.0	1.84	
Daphne.Minor	- 24	0.08	93	6.0	12.0	0.34	
Darwin	10	2.33	168	34.1	290.2	2.85	
Eden	8	0.03	71	0.4	0.4	17.95	
Enderby	2	0.18	112	2.6	50.2	0.10	
Espanola	97	58.27	198	1.1	88.3	0.57	
Fernandina	93	634.49	1494	4.3	95.3	4669.32	
Gardner1	58	0.57	49	1.1	93.1	58.27	
Gardner2	5	0.78	227	4.6	62.2	0.21	
Genovesa	40	17.35	76	47.4	92.2	129.49	
Isabela	347	4669.32	1707	0.7	28.1	634.49	
Marchena	51	129.49	343	29.1	85.9	59.56	
Onslow	2	0.01	25	3.3	45.9	0.10	
Pinta	104	59.56	777	29.1	119.6	129.49	
Pinzon	108	17.95	458	10.7	10.7	0.03	
Las.Plazas	12	0.23	94	0.5	0.6	25.09	
Rabida	70	4.89	367	4.4	24.4	572.33	
SanCristobal	280	551.62	716	45.2	66.6	0.57	
SanSalvador	237	572.33	906	0.2	19.8	4.89	
SantaCruz	444	903.82	864	0.6	0.0	0.52	
SantaFe	62	24.08	259	16.5	16.5	0.52	
SantaMaria	285	170.92	640	2.6	49.2	0.10	
Seymour	44	1.84	147	0.6	9.6	25.09	
Tortuga	16	1.24	186	6.8	50.9	17.95	
Wolf	21	2.85	253	34.1	254.7	2.33	

Notes

Poisson Regression Fit Call:

glm(formula = Species ~ ., family = poisson, data = gala)
Deviance Residuals:

Min	1Q	Median	3Q	Max
-8.2752	-4.4966	-0.9443	1.9168	10.1849

Coefficients:

 Estimate Std. Error z value Pr(>|z|)

 (Intercept) 3.155e+00 5.175e-02 60.963 < 2e-16 ***</td>

 Area
 -5.799e-04 2.627e-05 -22.074 < 2e-16 ***</td>

 Elevation
 3.541e-03 8.741e-05 40.507 < 2e-16 ***</td>

 Nearest
 8.826e-03 1.821e-03 4.846 1.26e-06 ***

 Scruz
 -5.709e-03 6.256e-04 -9.126 < 2e-16 ***</td>

 Adjacett
 -6.630e-04 2.933e-05 -22.608 < 2e-16 ***</td>

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 3510.73 on 29 degrees of freedom Residual deviance: 716.85 on 24 degrees of freedom AIC: 889.68

Number of Fisher Scoring iterations: 5

Nafer Quality	v and	Possible	Sampling	Schemes

The data shown in the table below were collected as part of a quality improvement study at a semiconductor factory. A sample of wafers was drawn and cross-classified according to whether a particle was found on the die that produced the wafer and whether the wafer was good or bad.

Quality	No Particles	Particles	Total	
Good	320	14	334	
Bad	80	36	116	
Total	400	50	450	

Source: Hall, S. (1994). *Analysis of defectivity of semiconductor* wafers by contigency

How the data were collected?

Possible Sampling Schemes

- We observed the manufacturing process for a certain period of time and observed 450 wafers ⇒ Poisson Model
- We decided to sample 450 wafers. The data were then cross-classified ⇒ Multinomial Model
- We selected 400 wafers without particles and 50 wafers with particles and then recorded the good or bad outcome ⇒ Binomial Model
- We selected 400 wafers without particles and 50 wafers with particles that also included, by design, 334 good wafers and 116 bad ones ⇒ Hypergeometric Model

Notes

Notes

....

Poisson Model: Log-linear Regression

$Y_{ij} \sim \text{Poi}(\lambda_{ij}), \log \lambda_{ij} = \gamma + \alpha_i + \beta_j, i, j = 1, 2.$
<pre>> mod1 <- glm(Freq ~ Quality + Particle, family = "poisson") > summary(mod1)</pre>
Estimate Std Error z value Pr(S z)
(Intercept) 5.69336 0.05720 99.5350 < 2.2e-16
QualityBad -1.05755 0.10777 -9.8129 < 2.2e-16
ParticleYes -2.07944 0.15000 -13.8630 < 2.2e-16
n = 4 p = 3 Deviance = 54.03045 Null Deviance = 474.09877 (Difference = 420.06832) > drop1(mod1, test = "(hi") Single term deletions
Model:
Freq ~ Quality + Particle
Df Deviance AIC LRT Pr(>Chi)
<none> 54.03 83.77</none>
Quality 1 164.22 191.96 110.19 < 2.2e-16 ***
Particle 1 363.91 391.66 309.88 < 2.2e-16 ***
 Cienif ender, A (***) A 001 (**) A 01 (*) A 05 () A 1 () 1
Signif. codes: 0 1001 10 0.01 10 0.05 0.1 1 1

Notes

Multinomial Model

 $Y_{ij} \sim \text{Multi}(n, p_{11}, p_{12}, p_{21}, p_{22})$ Want to test $H_0: p_{ij} = p_i p_j$ vs. $\begin{array}{l} H_a: p_{ij} \neq p_i p_j, \quad i, j = 1, 2. \\ \text{> n = 450} \\ \text{> (pp < prop.table(xtabs(Freq ~ Particle)))} \\ \text{Particle} \end{array}$ Yes No 0.88888889 0.1111111 v.ososos9 0.111111
> (ap <- prop.table(xtabs(Freq ~ Quality)))
Quality
Good Bad
0.7422222 0.2577778
(International Content of C > (exp <- outer(qp, pp) * n)
 Particle</pre> Quality No Yes Good 296.8889 37.11111 Good 296.8889 37.1111 Bad 103.1111 12.88889 > (obs <- xtabs(Freq ~ Quality + Particle)) Particle Quality No Yes Good 320 14 Bad &0 36 > (2 * sum(obs * log(obs / exp))) [1] 54.03045

LEMS#1

Binomial Model

 $Y_{11} \sim \operatorname{Bin}(n_1 = 400, p_{11})$ $Y_{21} \sim \operatorname{Bin}(n_2 = 50, p_{21})$

 $\begin{array}{l} \text{Want to test } H_0: p_{11} = p_{21} \text{ vs. } H_a: p_{11} \neq p_{21} \\ \scriptstyle \text{ (m < matrix(Freq, nrow = 2))} \\ \scriptstyle \text{ (,1] [,2]} \\ \scriptstyle \text{ (,1] 320 & 80} \\ \scriptstyle \text{ (2,] 14 36} \\ \scriptstyle \text{ > (binFit < glm(m ~ 1, family = binomial))} \end{array}$

Call: glm(formula = m ~ 1, family = binomial)

Coefficients: (Intercept) 1.058

Degrees of Freedom: 1 Total (i.e. Null); 1 Residual Null Deviance: 54.03 Residual Deviance: 54.03 AIC: 66.19 > predict(binFit, type = "response") 1 2 0.7422222 0.7422222

Notes

Hypergeometric Model: Fisher's Exact Test

Notes

Notes

> fisher.test(obs)

Fisher's Exact Test for Count Data

 $Y_{11} \sim \text{Hyper}(N = 450, 400, 334)$

data: obs
p-value = 2.955e-13
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
 5.090628 21.544071
sample estimates:
 odds ratio
 10.21331

Generalized Linear Model

• Gaussian Linear Model:

 $Y \sim N(\mu, \sigma^2), \quad \mu = \mathbf{X}^T \boldsymbol{\beta}$

Bernoulli Linear Model:

$$Y \sim \text{Bernoulli}(\pi), \quad \log(\frac{\pi}{1-\pi}) = \mathbf{X}^T \boldsymbol{\beta}$$

• Poisson Linear Regression:

 $Y \sim \text{Poisson}(\lambda), \quad \log \lambda = \boldsymbol{X}^T \boldsymbol{\beta}$