Lecture 20
Poisson Regression II
STAT 8020 Statistical Methods II October 29, 2020

Whitney Huang Clemson University

Species Diversity on the Galapagos Islands Revisited
Recall we are interested in studying the relationship between the number of plant species (species) and the following geographic variables: Area, Elevation, Nearest, Scruz, Adjacent.

20.2

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Poisson Regression Fit

call:
glm(formula $=$ Species \sim., family $=$ poisson, data $=$ gala $)$

| Deviance | Residuals: | | | |
| :--- | ---: | :--- | ---: | ---: | ---: |
| Min | 10 | Median | 30 | Max |
| -8.2752 | -4.4966 | -0.9443 | 1.9168 | 10.1849 |

Coefficients:
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$
(Intercept) $3.155 \mathrm{e}+00$ 5.175e-02 $60.963<2 \mathrm{e}-16$ ***
Area -5.799e-04 2.627e-05 -22.074 < 2e-16 ***
Elevation $3.541 \mathrm{e}-03 \quad 8.741 \mathrm{e}-05 \quad 40.507<2 \mathrm{e}-16^{* * *}$
Nearest $\quad 8.826 \mathrm{e}-03 \quad 1.821 \mathrm{e}-03 \quad 4.846 \quad 1.26 \mathrm{e}-06$ ***
$\begin{array}{lrrrrr}\text { Nearest } & -5.809 \mathrm{e}-03 & 6.256 \mathrm{e}-04 & -9.126 & <2 \mathrm{e}-16^{* * *}\end{array}$
Adjacent $\quad-6.630 \mathrm{e}-04 \quad 2.933 \mathrm{e}-05-22.608<2 \mathrm{e}-16^{* * *}$
Signif. codes: 0 '***' 0.001 '**’ 0.01 '*’ 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
Null deviance: 3510.73 on 29 degrees of freedom Residual deviance: 716.85 on 24 degrees of freedom AIC: 889.68

Number of Fisher Scoring iterations: 5
Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Wafer Quality and Possible Sampling Schemes

The data shown in the table below were collected as part of a quality improvement study at a semiconductor factory. A sample of wafers was drawn and cross-classified according to whether a particle was found on the die that produced the wafer and whether the wafer was good or bad.

Quality	No Particles	Particles	Total
Good	320	14	334
Bad	80	36	116
Total	400	50	450

Source: Hall, S. (1994). Analysis of defectivity of semiconductor wafers by contigency

How the data were collected?

Possible Sampling Schemes

- We observed the manufacturing process for a certain period of time and observed 450 wafers \Rightarrow Poisson Model
- We decided to sample 450 wafers. The data were then cross-classified \Rightarrow Multinomial Model
- We selected 400 wafers without particles and 50 wafers with particles and then recorded the good or bad outcome \Rightarrow Binomial Model
- We selected 400 wafers without particles and 50 wafers with particles that also included, by design, 334 good wafers and 116 bad ones \Rightarrow Hypergeometric Model

Poisson Regression II CLEMS

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Poisson Model: Log-linear Regression
$Y_{i j} \sim \operatorname{Poi}\left(\lambda_{i j}\right), \quad \log \lambda_{i j}=\gamma+\alpha_{i}+\beta_{j}, \quad i, j=1,2$.
> mod1 <- glm(Freq ~ Quality + Particle, family = "poisson")

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Hypergeometric Model: Fisher's Exact Test

$$
Y_{11} \sim \operatorname{Hyper}(N=450,400,334)
$$

> fisher.test(obs)
Fisher's Exact Test for Count Data
data: obs
p-value $=2.955 \mathrm{e}-13$
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
5.09062821 .544071
sample estimates:
odds ratio
10.21331

Generalized Linear Model

- Gaussian Linear Model

$$
Y \sim \mathrm{~N}\left(\mu, \sigma^{2}\right), \quad \mu=\boldsymbol{X}^{T} \boldsymbol{\beta}
$$

Bernoulli Linear Model:

$$
Y \sim \operatorname{Bernoulli}(\pi), \quad \log \left(\frac{\pi}{1-\pi}\right)=\boldsymbol{X}^{T} \boldsymbol{\beta}
$$

Poisson Linear Regression:

$$
Y \sim \operatorname{Poisson}(\lambda), \quad \log \lambda=\boldsymbol{X}^{T} \boldsymbol{\beta}
$$

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

