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Completely Randomized Designs

A completely randomized design (CRD) has
g different treatments

g known treatment group sizes n1, n2, · · · , ng with∑g
i=1 ni = N

Completely random assignment of treatments to the
experimental units

This is the basic experimental design; everything else is a
modification

Easiest to analyze

Most resilient when things go wrong

Often sufficient
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Inference

Any evidence means (i.e., {µ1, µ2, · · · , µg}) are not all
the same? ⇒ ANOVA

Which ones differ? ⇒ Multiple comparisons

Estimates/confidence intervals of means and
differences

Notes

Notes

Notes
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Statistical Model: Means Model
Let Yij be the random variable that represents the
response for the jth experimental unit to treatment i. Let
µi = E(Yij) be the mean response for the ith treatment.
We have

Yij = µi + εij , i = 1, · · · , g, j = 1, · · · , ni, εij ∼ N(0, σ2)
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Effects Model
Alternatively, we could let µi = µ+ αi, which leads to

Yij = µ+ αi + εij , i = 1, · · · , g, j = 1, · · · , ni, εij ∼ N(0, σ2)
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Overparameterized. Need to add a constraint so
that the parameters are estimable.
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Effects Model Cont’d

Suppose we let
∑g

i=1 niαi = 0
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Effects Model Cont’d

Suppose we let α1 = 0
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Data Layout & the Dot Notation

yij is the “observed” response for the jth experimental
unit to treatment i.

Treatment Observations Totals Averages
1 y11 y12 · · · y1n1 y1· ȳ1·
2 y21 y22 · · · y2n2 y2· ȳ2·
...

...
... · · ·

...
...

...
g yg1 yg2 · · · ygng yg· ȳg·

y·· ȳ··

Completely
Randomized

Designs

22.9

ANOVA
Decomposition of yij : yij = ȳ·· + (ȳi· − ȳ··) + (yij − ȳi·)

⇒
g∑
i=1

ni∑
j=1

(yij − ȳ··)2︸ ︷︷ ︸
SST

=

g∑
i=1

ni (ȳi· − ȳ··)2︸ ︷︷ ︸
SSTRT

+

g∑
i=1

ni∑
j=1

(yij − ȳi·)2︸ ︷︷ ︸
SSE
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ANOVA Table

Source df SS MS EMS

Treatment g − 1 SSTRT MSTRT = SSTRT
g−1 σ2 +

∑g
i=1 niα

2
i

g−1

Error N − g SSE MSE = SSE
N−g σ2

Total N − 1 SST

SST =

g∑
i=1

ni∑
j=1

(yij − ȳ··)2 =

g∑
i=1

ni∑
j=1

y2ij −
y2··
N

SSTRT =

g∑
i=1

ni (ȳi· − ȳ··)2 =

g∑
i=1

y2i·
ni
− y2··
N

SSE =

g∑
i=1

ni∑
j=1

(yij − ȳi·)2 =

g∑
i=1

ni∑
j=1

y2ij −
g∑
i=1

y2i·
ni

= SST − SSTRT
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F-Test

Testing for treatment effects

H0 : αi = 0 for all i
Ha : αi 6= 0 for some i

Test statistics: F = MSTRT
MSE

. Under H0, the test statistic
follows an F-distribution with g − 1 and N − g degrees of
freedom
Reject H0 if

Fobs > Fg−1,N−g;α

for an α-level test, Fg−1,N−g;α is the 100× (1− α)%
percentile of a central F-distribution with g − 1 and N − g
degrees of freedom.

The P-value of the F-test is the probability of obtaining F
at least as extreme as Fobs, that is, P(F > Fobs)⇒ reject
H0 if P-value < α.
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F Distribution and the F-Test
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Example
An experiment was conducted to determine if experience
has an effect on the time it takes for mice to run a maze.
Four treatment groups, consisting of mice having been
trained on the maze one, two, three and four times were
run through the maze and their times recorded.

Source: https://www.shutterstock.com/image-vector/find-your-way-cheese-mouse-maze-232569073

Training runs 1 2 3 4
ni 5 5 5 5
ȳi· 9.14 7.24 6.76 5.18
s2i 0.308 0.418 0.313 0.262
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Example Cont’d

Training runs 1 2 3 4
ni 5 5 5 5
ȳi· 9.14 7.24 6.76 5.18
s2i 0.308 0.418 0.313 0.262

Write down the model.

Fill out the ANOVA table and test whether the time to
run the maze is affected by training. Use a significant
level of .05.
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Model Assumptions

Model:

yij = µ+ αi + εij , i = 1, · · · , g, j = 1, · · · , ni.

We make the following assumptions:

Errors normally distributed

Errors have constant variance

Errors are independent

⇒ εij
i.i.d.∼ N(0, σ2)

Notes

Notes

Notes
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What If Assumptions are Violated?

If the assumptions are not true, our statistical inferences
might not be valid, for example,

A confidence interval might not cover with the stated
coverage rate

A test with nominal type I error could actually have a
larger or smaller type I error rate

We need good strategy for checking model assump-
tions, i.e., εij

i.i.d.∼ N(0, σ2).
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Checking Model Assumptions

We need to check if these assumptions reasonably met

Model:

yij = µ+ αi + εij

Data:

yij = (ȳ·· + (ȳi· − ȳ··)) + (yij − ȳi·)
yij = ŷij + ε̂ij (rij)
observed = predicted + residual

Residuals are our “estimates” of unobservable errors ε′ijs

We will conduct model diagnostics using residual
and predicted values.

Notes

Notes

Notes
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Residuals

We will use residuals to assess the model assumptions.

Raw residual:

rij = yij − ŷij , where ŷij = µ̂+ α̂i = ȳi·

Standardized residual (internally Studentized
residual) adjusts rij for its estimated standard
deviation

sij =
rij√

MSE(1− 1
ni

)

Studentized residual (externally Studentized
residual)

tij = sij

√
N − g − 1

N − g − s2ij

tij ∼ tdf=N−g−1 if the model is correct⇒ can be used
to identify outliers
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Assessing Normality

We DO NOT assume all y′ijs come from the same normal
distribution, instead we assume ε′ijs come from the same
normal distribution⇒ Not informative to plot a histogram
for all the data—-treatment effects lead to non-normality

Example: Suppose g = 3, (µ1, µ2, µ3) = (8, 10, 15) and
ε′ijs ∼ N(0, 22)
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Assessing Normality Cont’d

If sample sizes are large, histograms of residuals can
be constructed from each treatment separately

Residual
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Also, if sample sizes are large, QQ-plots or normal
quantile plots can be generated for each treatment

Notes

Notes

Notes
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Normal Quantile Plots

Plots r(k) versus Φ−1( k−3/8n+1/4), k = 1, · · · , n, where r(k) is

the kth ordered residual and Φ−1( k−3/8n+1/4) is its
corresponding (standard) normal score.
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Remarks on Assessing Normality
Assessing normality

Formal tests (e.g., Shapiro–Wilk test,
Anderson–Darling test) are usually not useful:

With small sample sizes, one will never be able to
reject H0, with large sample sizes, one will constantly
detect little deviations that have no practical effect

Assess normal assumption graphically using
QQ-plots or histograms

Dealing with Non-normality

Use non-parametric procedure such as
Kruskal–Wallis test (1952)

Transformation such as Box-Cox (1964)

F-test is robust to non-normality
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Assessing Equal Variance

We can test for equal variance, but some tests rely
heavily on normality assumption:

Hartley’s test
Bartlett’s test
Cochran’s C test

F-test is reasonably robust to unequal variance if n′is
are equal, or nearly so

“If you have to to test for equality of variances, your
best bet is Levene’s test.” – Gary Oehlert

Notes

Notes

Notes
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Levene’s Test

1 Compute rij = yij − ȳi·

2 Treat the |rij | as data and use the ANOVA F-test to
test H0 that the groups have the same average value
of |rij |

3 If MSTRT
MSE

> Fg−1,N−g−1;α ⇒ reject H0

4 Modified Levene’s (Brown-Forsythe) test: use
dij = |yij − ỹi|, the absolute deviations from the
group medians instead of |rij |

Fairly robust to non-normality and unequal sample size
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Diagnostic Plot for Non-Constant Variance
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Use this residual versus predicted value (treatment) plot
to assess equal variance assumption and search for
possible outliers
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Remarks on Assessing Constant Variance Assumption

Checking constant variance assumption: Assess the
assumption qualitatively, don’t just rely no tests

Dealing with unequal variance

Variance-stabilizing transformations

Account unequal variance in the model

F-test is reasonably robust to unequal variance if we
have (nearly) balanced designs

Notes

Notes

Notes
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Assessing Dependence

Independence is often argued via randomization.
However, plotting residuals versus run order or spatial
location can give information on lack of independence.
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Durbin–Watson statistic is a simple numerical method for
checking serial dependence:

DW =

∑n−1
k=1(rk − rk+1)

2∑n
k=1 r

2
k
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Example: Balloon Experiment (taken from Dean and
Voss Exercise 3.12)

The experimenter (Meily Lin) had observed that some colors of
birthday balloons seem to be harder to inflate than others. She
ran this experiment to determine whether balloons of different
colors are similar in terms of the time taken for inflation to a
diameter of 7 inches. Four colors were selected from a single
manufacturer. An assistant blew up the balloons and the
experimenter recorded the times with a stop watch. The data,
in the order collected, are given in Table 3.13, where the codes
1, 2, 3, 4 denote the colors pink, yellow, orange, blue,
respectively.

Notes

Notes

Notes


