Lecture 23

Randomized Complete Block
Designs \& Factorial Designs
STAT 8020 Statistical Methods II
November 17, 2020

Whitney Huang
Clemson University

Randomized Complete Bloc
Designs \& Designs \&
Factorial Designs CLEMSergn

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

RCBD Notation

- g is the number of treatments; r is the number of blocks
- $y_{i j}$ is the measurement on the unit in block i that received treatment j
- $N=r \times g$ is the total number of experimental units
- $\bar{y}_{. j}=\sum_{i=1}^{r} \frac{y_{i j}}{r}$ is the average of all measurements for units receiving treatment j
- $\bar{y}_{i .}=\sum_{j=1}^{g} \frac{y_{i j}}{g}$ is the average of all measurements for units in the $i_{t h}$ block
- $\bar{y}_{. .}=\sum_{i=1}^{r} \sum_{j=1}^{g} \frac{y_{i j}}{N}$ is the average of all measurements

RCBD Model and Assumptions

- The model for an RCBD is:

$$
Y_{i j}=\underbrace{\mu+\alpha_{j}}_{\mu_{j}}+\beta_{i}+\varepsilon_{i j}, \quad i=1, \cdots, r, \quad j=1, \cdots, g
$$

where μ is the overall mean, α_{j} is the effect of treatment j, β_{i} is the effect of block i, and $\varepsilon_{i j} \stackrel{i i d}{\sim} \mathrm{~N}\left(0, \sigma^{2}\right)$ are random errors

- The effect of each level of the treatment is the same across blocks \Rightarrow no interaction between $\alpha^{\prime} s$ and $\beta^{\prime} s$

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
S S_{e r r}=\sum_{i=1}^{r} \sum_{j=1}^{g}\left(y_{i j}-\bar{y}_{i .}-\bar{y}_{. j}+\bar{y}_{. .}\right)^{2}
$$

Source	df	SS MS	F statisticLEMS
Treatment $g-1$	$S S_{t r t} M S_{t r t}=\frac{S S_{t r t}}{g-1}$	$F_{t r t}=\frac{M S_{t r t}}{M S_{\text {err }}}$	
Block	$r-1$	$S S_{b l k} M S_{b l k}=\frac{S S_{b l k}}{r-1}$	$F_{b l k}=\frac{M S_{b l k}}{M S_{e r r}}$
Error	$(g-1)(r-1)$	$S S_{e r r} M S_{e r r}=\frac{S S_{e r r}}{(g-1)(r-1)}$	
Total	$N-1$	$S S_{t o t}$	

There are two hypothesis tests in an RCBD:

- $H_{0}: \alpha_{j}=0 \quad j=1, \cdots, g$
$H_{a}: \alpha_{j} \neq 0 \quad$ for some j
Test Statistic: $F_{t r t}=\frac{M S_{t r t}}{M S_{e r r}}$. Under H_{0},
$F_{t r t} \sim F_{d f_{1}=g-1, d f_{2}=(g-1)(r-1)}$
- H_{0} : The means of all blocks are equal
H_{a} : At least one of the blocks has a different mean Test Statistic: $F_{b l k}=\frac{M S_{b l k}}{M S_{e r r}}$. Under H_{0},
$F_{b l k} \sim F_{d f_{1}=r-1, d f_{2}=(g-1)(r-1)}$

Example

Suppose you are manufacturing concrete cylinders for bridge supports. There are three ways of drying concrete (say A, B, and C), and you want to find the one that gives you the best compressive strength. The concrete is mixed in batches that are large enough to produce exactly three cylinders, and your production engineer believes that there is substantial variation in the quality of the concrete from batch to batch.

You have data from $r=5$ batches on each of the $g=3$ drying processes. Your measurements are the compressive strength of the cylinder in a destructive test. (So there is an economic incentive to learn as much as you can from a well-designed experiment.)

Example: Data Set

The data are:

	Batch					
Treatment	1	2	3	4	5	Trt Sum
A	52	47	44	51	42	236
B	60	55	49	52	43	259
C	56	48	45	44	38	231
Batch Mean	168	150	138	147	123	726

The primary null hypothesis is that all three drying techniques are equivalent, in terms of compressive strength.

The secondary null is that the batches are equivalent (but if they are, then we have wasted power by controlling for an effect that is small or non-existent).

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example: ANOVA Table

Analysis of Variance Table		
Response: x		
	Df Sum Sq	Mean Sq F value
trt	289.2	44.607 .6239
blk	4363.6	90.9015 .5385
Residuals	846.8	5.85
	$\operatorname{Pr}(>F)$	
trt	0.0140226	*
blk	0.0007684	

Interpretation?

What If We Ignore the Block Effect?

Suppose we had not blocked for batch. Then the data would be:

Treatment		Trt Sum
A	$52,47,44,51,42$	236
B	$60,55,49,52,43$	259
C	$56,48,45,44,38$	231

This is the same as before except now we ignore which batch the observation came from.

ANOVA Table for CRD

```
Analysis of Variance Table
Response: x
    Df Sum Sq Mean Sq F value Pr(>F)
trt 2 89.2 44.6 1.3041 0.3073
Residuals 12 410.4 34.2
We fail to reject the null \(H_{0}: \mu_{A}=\mu_{B}=\mu_{C}\) if we ignore the block effect
```

[^0]Randomized Complete Block Complete Block
Designs \& Factorial Designs CLEMS

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Assessing the Additivity Assumption: Interaction Plot

"Parallel lines" \Rightarrow No interaction occurs

The Battery Design Experiment (Example 5.1, Montgomery, 6th Ed)

An engineer would like to study what effects do material type and temperature have on the life of the battery he designed. the engineer decides to test three plate materials at three temperature levels:

Material	Temperature ($\left.{ }^{\circ} \mathrm{F}\right)$					
Type	15		70		125	
1	130	155	34	40	20	70
	74	180	80	75	82	58
2	150	188	136	122	25	70
	159	126	106	115	58	45
3	138	110	174	120	96	104
3	168	160	150	139	82	60

This design is called a 3^{2} factorial design

Two-Factor Factorial Design

The effects model:

$y_{i j k}=\mu+\alpha_{i}+\beta_{j}+(\alpha \beta)_{i j}+\varepsilon_{i j k}$,
$i=1, \cdots, a, j=1, \cdots, b, k=1, \cdots, n$

- a : the number of levels in the factor A
b : the number of levels in the factor B
- $(\alpha \beta)_{i j}$: the interaction between α_{i} and β_{j}
- $\sum_{i=1}^{a} \alpha_{i}=\sum_{j=1}^{b} \beta_{j}=\sum_{i=1}^{a}(\alpha \beta)_{i j}=\sum_{j=1}^{b}(\alpha \beta)_{i j}=0$
- $a b n$ is the total number of the observations

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad 23.14

Randomized Complete Block Designs \& Factorial Designs
 Notes

CLEMS*:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[^0]: \Rightarrow Using blocks gave us a more powerful test

