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Agenda

1 Computer Experiments
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What is a Computer Experiment

In some situations it is economically, ethically, or simply
not possible to run a physical experiment. Instead, the
following scenario might be feasible:

the physical process can be described by a
mathematical model (e.g., a system of differential
equations)

computer code (simulator) can be written to compute
the response from the mathematical model

Input
x ∈ X

Model
f ∶ X ↦ Y

Output
y = f(x)

In this case, a researcher can conduct a computer
experiment by running the computer code, which serves
as a proxy for the physical process, to compute a
“response” at any combination of values of the inputs
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Examples of Computer Models
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Computer Experiments vs. Physical Experiments

“Experimental results are believed by everyone,
except for the person who ran the experiment”

“Computational results are believed by no one,
except the person who wrote the code”

Replication, randomization and blocking are irrever-
ent for a computer experiment because many com-
puter codes are deterministic and all the inputs
to the code are known and can be controlled
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Design & Analysis of Computer Experiments

Design:
where to make the runs, i.e., the selection of inputs
{xi}ni=1 where xi = (x1,i, x2,i,⋯xd,i)

Analysis:
fit a statistical model using the model inputs-output
{yi,xi}ni=1 to “emulate” the simulator and to quantify
the prediction uncertainty for y(xnew), usually via a
Gaussian Process Model GP (m (⋅) ,K (⋅, ⋅)), where

m(x) = E[y(x)] is the mean function

K(x,x′) = Cov(y(x), y(x′)) is the covariance
function

Notes

Notes

Notes



Computer
Experiments &

Principal
Component

Analysis

Computer
Experiments

Multivariate
Analysis

Principal
component
analysis (PCA)

24.7

An Overview of Multivariate Analysis

In many studies, observations are collected on
several variables on each experimental/observational
unit

Multivariate analysis is a collection of statistical
methods for analyzing these multivariate data sets

Common Objectives

Dimensionality reduction

Classification

Grouping (Clustering)
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Multivariate Data
We display a multivariate data that contains n units on p
variables using a matrix

X =
⎛
⎜⎜⎜
⎝

X1,1 X2,1 ⋯ Xp,1

X1,2 X2,2 ⋯ Xp,2

⋮ ⋯ ⋱ ⋮
X1,n X2,n ⋯ Xp,n

⎞
⎟⎟⎟
⎠

Summary Statistics
Mean Vector: X̄ = (X̄1, X̄2,⋯, X̄p)T

Covariance Matrix: Σ = {σij}pi,j=1, where
σii = Var(Xi), i = 1,⋯, p and σij = Cov(Xi,Xj), i ≠ j

Next, we are going to introduce Principal Compo-
nent Analysis (PCA), a useful tool for conducting
dimension reduction
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Example: Monthly Sea Surface Temperatures

Notes

Notes

Notes



Computer
Experiments &

Principal
Component

Analysis

Computer
Experiments

Multivariate
Analysis

Principal
component
analysis (PCA)

24.10

Sea Surface Temperatures and Anomalies

The “data” are gridded at a 2○ by 2○ resolution from
124○E − 70○W and 30○S − 30○N . The dimension of
this SST data set is
2303 (number of grid points in space) ×
552 (monthly time series from 1970 Jan. to 2015 Dec.)

Sea-surface temperature anomalies are the
temperature differences from the climatology (i.e.
long-term monthly mean temperatures)

We will demonstrate the use of Empirical Orthogonal
Function (EOF) analysis to uncover the
low-dimensional structure of this spatio-temporal
data set
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The Emipirical Orthogonal Function (EOF)
Decomposition

Empirical orthogonal functions (EOFs) are the
geophysicist’s terminology for the eigenvectors in the
eigen-decomposition of an empirical covariance matrix. In
its discrete formulation, EOF analysis is simply Principal
Component Analysis (PCA). EOFs are usually used

To find principal spatial structures

To reduce the dimension (spatially or temporally) in
large spatio-temporal datasets
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Screen Plot for EOFs
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Perform EOF Decomposition and Plot the First Three
Modes

EOF1: The
classic ENSO
pattern

EOF2: A
modulation of the
center

EOF3: Messing
with the coast of
SA and the
Northern Pacific.
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1998 Jan El Niño Event

Data EOF 1

EOF 1 and 2 EOF 1, 2 and 3
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Principal Component Analysis

Given a random sample from a p-dimensional random
vector Xi = {X1,i,X2,i,⋯,Xp,i}, i = 1,⋯, n

Dimension reduction technique

Large number of variables (p)

Number of variables (p) may be greater than number
of observations (n)

Create new, uncorrelated variables (principal
components) for the follow up analysis

Principal Component Regression

Interpretation of principal components can be difficult
in some situations

Notes

Notes

Notes
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Finding Principal Components
Principal Components (PC) are uncorrelated linear
combinations X̃1, X̃2,⋯, X̃p determined sequentially, as
follows:

1 The first PC is the linear combination
X̃1 = cT1 X = ∑p

i=1 c1iXi that maximize Var(X̃1)
subject to cT1 c1 = 1

2 The second PC is the linear combination
X̃2 = cT2 X = ∑p

i=1 c2iXi that maximize Var(X̃2)
subject to cT2 c2 = 1 and cT2 c1 = 0

⋮

3 The jth PC is the linear combination
X̃j = cTj X = ∑p

i=1 cjiXi that maximize Var(X̃j)
subject to cTj cj = 1 and cTj ck = 0∀k < j
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Principal Components

Let Σ, the covariance matrix of X, have
eigenvalue-eigenvector pairs (λi,ei)pi=1 with with
λ1 ≥ λ2 ≥ ⋯ ≥ λp ≥ 0 Then, the kth principal
component is given by

X̃k = eTkX = ek1X1 + ek2X2 +⋯ekpXp

Then,

Var(X̃i) = λi, i = 1,⋯, p

Cov(X̃j , X̃k) = 0, ∀j ≠ k
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PCA and Proportion of Variance Explained

It can be shown that
p

∑
i=1

Var(X̃i) = λ1 + λ2 +⋯ + λp =
p

∑
i=1

Var(Xi)

The proportion of the total variance associated with
the kth principal component is given by

λk
λ1 + λ2 +⋯ + λp

If a large proportion of the total population variance
(say 80% or 90%) is explained by the first k PCs,
then we can restrict attention to the first k PCs
without much loss of information

Notes

Notes

Notes
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Toy Example 1
Suppose we have X = (X1,X2)T where X1 ∼ N(0,4),
X2 ∼ N(0,1) are independent

Total variation = Var(X1) +Var(X2) = 5

X1 axis explains 80% of total variation

X2 axis explains the remaining 20% of total variation
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Toy Example 2
Suppose we have X = (X1,X2)T where X1 ∼ N(0,4),
X2 ∼ N(0,1) and Cor(X1,X2) = 0.8

Total variation
= Var(X1) +Var(X2) = Var(X̃1) +Var(X̃2) = 5

X̃1 = .9175X1 + .3975X2 explains 93.9% of total
variation

X̃2 = .3975X1 − .9176X2 explains the remaining 6.1%
of total variation
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