Lecture 24 **Computer Experiments & Principal Component Analysis**

STAT 8020 Statistical Methods II November 19, 2020

Notes

Notes

Whitney Huang Clemson University

Agenda

Computer Experiments

2 Multivariate Analysis

Principal component analysis (PCA)

Computer Experiments & Principal Component Analysis

What is a Computer Experiment

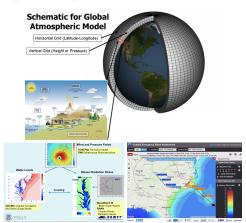
In some situations it is economically, ethically, or simply not possible to run a physical experiment. Instead, the following scenario might be feasible:

- the physical process can be described by a mathematical model (e.g., a system of differential equations)
- computer code (simulator) can be written to compute the response from the mathematical model

1	Input		Model	Output
	$x \in \mathcal{X}$		$f: \mathcal{X} \mapsto \mathcal{Y}$	y = f(x)

In this case, a researcher can conduct a **computer** experiment by running the computer code, which serves as a proxy for the physical process, to compute a "response" at any combination of values of the inputs

Examples of Computer Models



Notes

Computer Experiments vs. Physical Experiments

- "Experimental results are believed by everyone, except for the person who ran the experiment"
- "Computational results are believed by no one, except the person who wrote the code"

Replication, randomization and blocking are irreverent for a computer experiment because many computer codes are deterministic and all the inputs to the code are known and can be controlled

Notes

Design & Analysis of Computer Experiments

• Design:

where to make the runs, i.e., the selection of inputs $\{x_i\}_{i=1}^n$ where $x_i = (x_{1,i}, x_{2,i}, \cdots x_{d,i})$

Analysis:

fit a statistical model using the model inputs-output $\{y_i, x_i\}_{i=1}^n$ to "emulate" the simulator and to quantify the prediction uncertainty for $y(x_{\mathsf{new}})$, usually via a Gaussian Process Model GP $(m(\cdot), K(\cdot, \cdot))$, where

- m(x) = E[y(x)] is the mean function
- K(x, x') = Cov(y(x), y(x')) is the covariance function

An Overview of Multivariate Analysis

- In many studies, observations are collected on several variables on each experimental/observational unit
- Multivariate analysis is a collection of statistical methods for analyzing these multivariate data sets

Common Objectives

- Dimensionality reduction
- Classification
- Grouping (Clustering)

Notes

Multivariate Data

We display a multivariate data that contains \boldsymbol{n} units on \boldsymbol{p} variables using a matrix

$$\boldsymbol{X} = \begin{pmatrix} X_{1,1} & X_{2,1} & \cdots & X_{p,1} \\ X_{1,2} & X_{2,2} & \cdots & X_{p,2} \\ \vdots & \cdots & \ddots & \vdots \\ X_{1,n} & X_{2,n} & \cdots & X_{p,n} \end{pmatrix}$$

Summary Statistics

• Mean Vector: $\bar{\boldsymbol{X}} = (\bar{X}_1, \bar{X}_2, \cdots, \bar{X}_p)^T$

• Covariance Matrix:
$$\Sigma = \{\sigma_{ij}\}_{i=1}^{p}$$
, where $\sigma_{ii} = \operatorname{Var}(X_i), \quad i = 1, \dots, p \text{ and } \sigma_{ij} = \operatorname{Cov}(X_i, X_j), i \neq j$

Next, we are going to introduce **Principal Component Analysis (PCA)**, a useful tool for conducting dimension reduction

Notes

Notes

Example: Monthly Sea Surface Temperatures

Sea Surface Temperatures and Anomalies

- The "data" are gridded at a 2° by 2° resolution from $124^{\circ}E 70^{\circ}W$ and $30^{\circ}S 30^{\circ}N$. The dimension of this SST data set is 2303 (number of grid points in space) × 552 (monthly time series from 1970 Jan. to 2015 Dec.)
- Sea-surface temperature anomalies are the temperature differences from the climatology (i.e. long-term monthly mean temperatures)
- We will demonstrate the use of Empirical Orthogonal Function (EOF) analysis to uncover the low-dimensional structure of this spatio-temporal data set

Computer Experiments 8 Principal Component Analysis
Multivariate Analysis

Notes

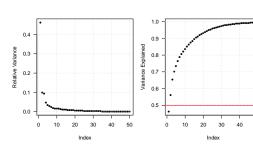
Notes

The Emipirical Orthogonal Function (EOF) Decomposition

Empirical orthogonal functions (EOFs) are the geophysicist's terminology for the eigenvectors in the eigen-decomposition of an empirical covariance matrix. In its discrete formulation, EOF analysis is simply Principal Component Analysis (PCA). EOFs are usually used

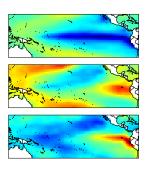
- To find principal spatial structures
- To reduce the dimension (spatially or temporally) in large spatio-temporal datasets

Screen Plot for EOFs



50

Perform EOF Decomposition and Plot the First Three Modes



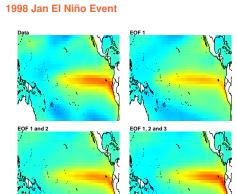
EOF1: The classic ENSO pattern

EOF2: A modulation of the center

EOF3: Messing

ľ

with the coast of SA and the Northern Pacific.



Notes

Notes

Principal Component Analysis

Given a random sample from a *p*-dimensional random vector $\boldsymbol{X}_i = \{X_{1,i}, X_{2,i}, \cdots, X_{p,i}\}, \quad i = 1, \cdots, n$

- Dimension reduction technique
 - Large number of variables (p)
 - Number of variables (p) may be greater than number of observations (n)
- Create new, uncorrelated variables (principal components) for the follow up analysis
 - Principal Component Regression
 - Interpretation of principal components can be difficult in some situations

Finding Principal Components

Principal Components (PC) are uncorrelated linear combinations $\tilde{X}_1, \tilde{X}_2, \cdots, \tilde{X}_p$ determined sequentially, as follows:

- The first PC is the linear combination $\tilde{X}_1 = c_1^T \mathbf{X} = \sum_{i=1}^p c_{1i} X_i$ that maximize $\operatorname{Var}(\tilde{X}_1)$ subject to $c_1^T c_1 = 1$
- **O** The second PC is the linear combination $\tilde{X}_2 = c_2^T \mathbf{X} = \sum_{i=1}^p c_{2i}X_i$ that maximize $\operatorname{Var}(\tilde{X}_2)$ subject to $c_2^T c_2 = 1$ and $c_2^T c_1 = 0$

÷

• The j_{th} PC is the linear combination $\tilde{X}_j = c_j^T X = \sum_{i=1}^p c_{ji}X_i$ that maximize $\operatorname{Var}(\tilde{X}_j)$ subject to $c_j^T c_j = 1$ and $c_j^T c_k = 0 \forall k < j$

Computer Experiments & Principal Component Analysis
Principal component analysis (PCA)

Notes

Notes

Principal Components

 Let Σ, the covariance matrix of X, have eigenvalue-eigenvector pairs (λ_i, e_i)^p_{i=1} with with λ₁ ≥ λ₂ ≥ ··· ≥ λ_p ≥ 0 Then, the k_{th} principal component is given by

 $\tilde{X}_k = \boldsymbol{e}_k^T \boldsymbol{X} = e_{k1} X_1 + e_{k2} X_2 + \cdots + e_{kp} X_p$

• Then,

 $\operatorname{Var}(\tilde{X}_i) = \lambda_i, \quad i = 1, \cdots, p$

 $\operatorname{Cov}(\tilde{X}_j, \tilde{X}_k) = 0, \quad \forall j \neq k$

PCA and Proportion of Variance Explained

• It can be shown that

$$\sum_{i=1}^{p} \operatorname{Var}(\tilde{X}_{i}) = \lambda_{1} + \lambda_{2} + \dots + \lambda_{p} = \sum_{i=1}^{p} \operatorname{Var}(X_{i})$$

• The proportion of the total variance associated with the k_{th} principal component is given by

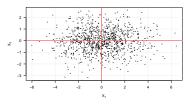
$$\frac{\lambda_k}{\lambda_1 + \lambda_2 + \dots + \lambda_p}$$

 If a large proportion of the total population variance (say 80% or 90%) is explained by the first k PCs, then we can restrict attention to the first k PCs without much loss of information Computer Experiments & Principal Component Analysis Computer Experiments Multivariate Analysis Principal component analysis (PCA)

Toy Example 1

Suppose we have $\boldsymbol{X} = (X_1, X_2)^T$ where $X_1 \sim N(0, 4)$, $X_2 \sim N(0,1)$ are independent

- Total variation = $Var(X_1) + Var(X_2) = 5$
- X_1 axis explains 80% of total variation
- X_2 axis explains the remaining 20% of total variation

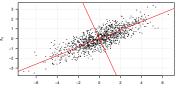


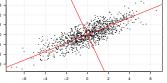
Notes

Toy Example 2

Suppose we have $\boldsymbol{X} = (X_1, X_2)^T$ where $X_1 \sim N(0, 4)$, $X_2 \sim N(0,1)$ and $Cor(X_1,X_2) = 0.8$

- Total variation
 - $= \operatorname{Var}(X_1) + \operatorname{Var}(X_2) = \operatorname{Var}(\tilde{X}_1) + \operatorname{Var}(\tilde{X}_2) = 5$
- \tilde{X}_1 = $.9175X_1$ + $.3975X_2$ explains 93.9% of total variation
- \tilde{X}_2 = .3975 X_1 .9176 X_2 explains the remaining 6.1% of total variation





Notes