Lecture 25 Classification & Cluster Analysis

STAT 8020 Statistical Methods II November 24, 2020

Notes

Notes

Whitney Huang Clemson University

Classification and Discriminant Analysis

Data:

 $\{\boldsymbol{X}_i, Y_i\}_{i=1}^n,$

where Y_i is the class information for the i_{th} observation $\Rightarrow Y$ is a qualitative variable

 Classification aims to classify a new observation (or several new observations) into one of those classes

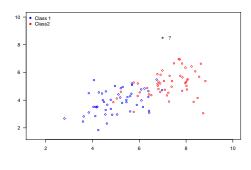
Quantity of interest: $P(Y = k_{th} category | X = x)$

• In this lecture we will focus on binary linear classification

Classification & Cluster Analysis
Classification Problems

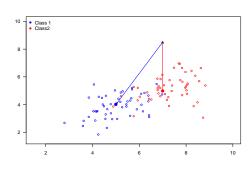
Illustrating Example

Wish to classify a new observation z(*) into one of the two groups (class 1 or class 2)



Illustrating Example Cont'd

We could compute the distances from this new observation $z = (z_1, z_2)$ to the groups, for example, $d_1 = \sqrt{(z_1 - \mu_{11})^2 + (z_2 - \mu_{12})^2}$, $d_2 = \sqrt{(z_1 - \mu_{21})^2 + (z_2 - \mu_{22})^2}$. We could assign z to the group with the smallest distance



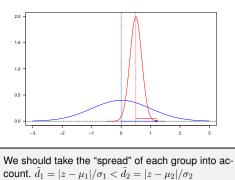
Cluster Analysis
CLEMS
UNIVERSIT
Classification Problems

Classification &

Notes

Variance Corrected Distance

In this one-dimensional example, $d_1 = |z - \mu_1| > |z - \mu_2|$. Does that mean z is "closer" to group 2 (red) than group 1 (blue)?



Notes

General Covariance Adjusted Distance: Mahalanobis Distance

The Mahalanobis distance is a measure of the distance between a point z and a distribution F:

$$D_M(\boldsymbol{z}) = \sqrt{(\boldsymbol{z} - \boldsymbol{\mu})^T \Sigma(\boldsymbol{z} - \boldsymbol{\mu})}$$

where $\pmb{\mu}$ is the mean vector and $\pmb{\Sigma}$ is the variance-covariance matrix of F

Binary Classification

Assume $X_1 \sim MVN(\mu_1, \Sigma)$, $X_2 \sim MVN(\mu_2, \Sigma)$, that is, $\Sigma_1 = \Sigma_2 = \Sigma$

- Maximum Likelihood of group membership: Group 1 if $\ell(z, \mu_1, \Sigma) > \ell(z, \mu_2, \Sigma)$
- Linear Discriminant Function: Group 1 if $(\mu_1 - \mu_2)^T \Sigma^{-1} z - \frac{1}{2} (\mu_1 - \mu_2)^T \Sigma^{-1} (\mu_1 + \mu_2) > 0$ Custom
- Minimize Mahalanobis distance:

Group 1 if $({m z} - {m \mu}_1)^T \Sigma^{-1} ({m z} - {m \mu}_1) < ({m z} - {m \mu}_2)^T \Sigma^{-1} ({m z} - {m \mu}_2)$

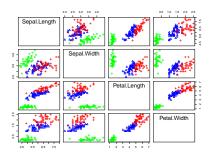
All the classification methods above are equivalent

Notes

Notes

Example: Fisher's Iris Data

4 variables (sepal length and width and petal length and width), 3 species (setosa, versicolor, and virginica)



Fisher's Iris Data Cont'd

Let's focus on the latter two classes (versicolor, and virginica)

Sepal.Lengt	h		
22 22 30 38	Sepal.Width		
		Petal.Length	
			Petal.Width

Fisher's iris Data Cont'd

To further simplify the matter, let's focus on the first two PCs of \boldsymbol{X}

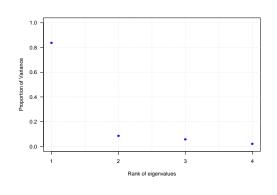
	PC1			
-05 00 05		PC2		
			PC3	
V 00 V 01			-0.5 -0.4 0.0 0.4	PC4

Classification & Cluster Analysis CLEEMS CANANT OF THE STATE
Linear Discriminant Analysis & Logistic Regression

25.10

Notes

Screen Plot

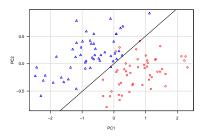


Classification & Cluster Analysis
CLEMS
Linear Discriminant Analysis & Logistic Regression
26.11

Notes

Linear Discriminant Analysis

Main idea: Use Bayes rule to compute
$P(Y = k \boldsymbol{X} = \boldsymbol{x}) = \frac{P(Y = k)P(\boldsymbol{X} = \boldsymbol{x} Y = k)}{P(\boldsymbol{X} = \boldsymbol{x})} = \frac{\pi_k f_k(\boldsymbol{x})}{\sum_{k=1}^K \pi_k f_k(\boldsymbol{x})}.$
Assuming $f_k(\boldsymbol{x}) \sim \text{MVN}(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}), k = 1, \cdots, K.$ Use
$\hat{\pi}_k = \frac{n_k}{n} \Rightarrow$ it turns out the resulting classifier is linear in
X



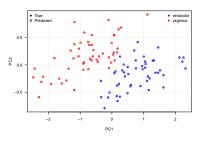
Classification Performance Evaluation



Notes

Logistic Regression Classifier

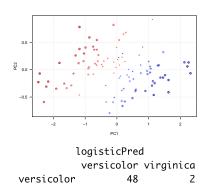
Main idea: Model the logit $\log\left(\frac{\mathrm{P}(Y=1)}{1-\mathrm{P}(Y=1)}\right)$ as a linear function in \pmb{X}



Notes

Logistic Regression Classifier Cont'd

virginica



1

49

Classification & Cluster Analysis
Classification Problems Linear Discriminant
Analysis & Logistic Regression An Overview of Cluster Analysis

Quadratic Discriminant Analysis

In Linear Discriminant Analysis, we **assume** $\{f_k(x)\}_{k=1}^K$ are normal densities and $\Sigma_1 = \Sigma_2$, therefore we obtain a linear classifier. What if $\Sigma_1 \neq \Sigma_2 \Rightarrow$ we get quadratic discriminant analysis

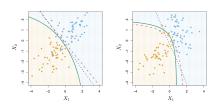


Figure: Figure courtesy of An Introduction of Statistical Learning by G. James et al. pp. 150

Cluster Analysis
<u>CLEMS</u>
Classification Problems Linear Discriminant
Analysis & Logistic Regression

Classification &

Notes

Linear Discriminant Analysis Versus Logistic Regression

For a binary classification problem, one can show that both Linear Discriminant Analysis (LDA) and Logistic Regression are linear classifiers. The difference is in how the parameters are estimated:

- Logistic regression uses the conditional likelihood based on $\mathrm{P}(Y|\pmb{X}=\pmb{x})$
- LDA uses the full likelihood based on multivariate normal assumption on *X*
- Despite these differences, in practice the results are often very similar

Classification & Cluster Analysis
Linear Discriminant Analysis & Logistic Regression

Notes

What is Cluster Analysis?

- Cluster: a collection of data objects
 - "Similar" to one another within the same cluster
 - "Dissimilar" to the objects in other clusters
- Cluster analysis: Grouping a set of data objects into clusters
- Clustering is unsupervised classification, unlike classification, there is no predefined classes, and the number of clusters is usually unknown

assification bbiens ear incriminant alysis & Logistic greesion Overview of ster Analysis be K-Means jorithm inster Analysis ster Analysis del-based sterring

Some Examples of Clustering Applications

- Marketing: Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs
- Land use: Identification of areas of similar land use in an earth observation database
- Earth-quake studies: Observed earth quake epicenters should be clustered along continent faults

Classification & Cluster Analysis
CLEMS#N
An Overview of Cluster Analysis

Notes

Notes

What Is Good Clustering?

- A good clustering method will produce clusters with
 - high within-class similarity
 - low between-class similarity
- The quality of a clustering result depends on both the similarity measure used and its implementation
- The performance of a clustering method is measured by its ability to discover the hidden patterns

Classification &

Major Clustering Approaches

• Partitioning algorithm: partition the observations into a pre-specified number of clusters, for example, k-means clustering

• **Hierarchy algorithm:** Construct a hierarchical decomposition of the observations to build a hierarchy of clusters, for example, hierarchical agglomerative clustering

• Model-based Clustering: A model is hypothesized for each of the clusters, for example, Gaussian mixture models

Partitioning Algorithm

Let C_1, \cdots, C_K denote sets containing the indices of the observations $\{x_i\}_{i=1}^n$ in each cluster. These sets satisfy two properties:

- $C_1 \cup C_2 \cup \cdots \cup C_K = \{1, \cdots, n\} \Rightarrow$ each observation belongs to at least one of the K clusters
- $C_k \cap C_{k'} = \emptyset \ \forall k \neq k' \Rightarrow$ no observation belongs to more than one cluster

For instance, if the i_{th} observation (i.e. $\pmb{x}_i)$ is in the k_{th} cluster, then $i \in C_k$

Classification & Cluster Analysis
CLEMS
The K-Means Algorithm

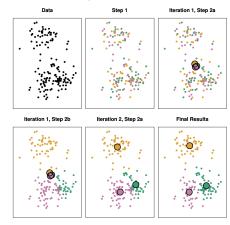
Notes

The k-Means Algorithm

- Step 0: Choose the number of clusters K
- Step 1: Randomly assign a cluster (from 1 to *K*), to each of the observations. These serve as the initial cluster assignments
- Step 2: Iterate until the cluster assignment stop changing
 - For each of the *K* cluster, compute the cluster centroid. The *k*_{th} cluster centroid is the mean vector of the observations in the *k*_{th} cluster
 - Assign each observations to the cluster whose centroid is closest in terms of Euclidean distance

Notes

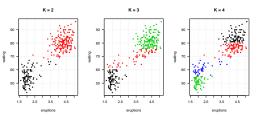
k-Means Clustering Illustration



Classification & Classi

K-Means Clustering in R

kmean3.faithful <- kmeans(x = faithful, centers = 3)</pre>



Notes

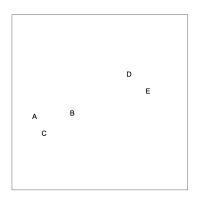
Hierarchical Clustering

- k-means clustering requires us to pre-specify the number of clusters K
- Hierarchical clustering is an alternative approach which does not require that we commit to a particular choice of K
- Agglomerative clustering: This is a "bottom-up" approach: each observation starts in its own cluster, and pairs of clusters are merged as one moves up the hierarchy

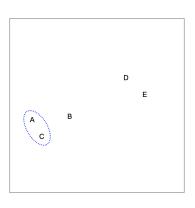
Classification & Cluster Analysis
Hierarchical Clustering

Notes

Hierarchical Agglomerative Clustering Illustration



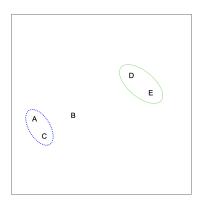
Hierarchical Agglomerative Clustering Illustration



	Classification & Cluster Analysis
Ç	
	Hierarchical Clustering
	25.28

Notes

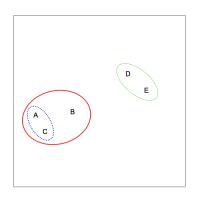
Hierarchical Agglomerative Clustering Illustration



Classification & Cluster Analysis
Hierarchical Clustering
25.29

Notes

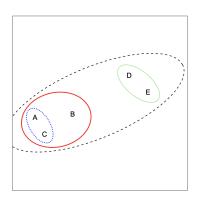
Hierarchical Agglomerative Clustering Illustration



Classification & Cluster Analysis
CLEMS
Hierarchical Clustering

25.30

Hierarchical Agglomerative Clustering Illustration

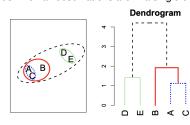


Classification & Cluster Analysis
CLEMS
Hierarchical Clustering
25.31

Notes

Hierarchical Agglomerative Clustering Algorithm

- Start with each observation in its own cluster
- Identify the closest two clusters and merge themRepeat
- Ends when all observations are in a single cluster



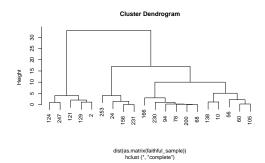
Cluster Analysis
CLEMS
Hierarchical Clustering
25.32

Classification &

Notes

Hierarchical Agglomerative Clustering in R

hc.faithful <- hclust(dist(faithful_sample))
plot(hc.faithful)</pre>



Classification & Cluster Analysis
CLEMSON
Hierarchical Clustering
25.33

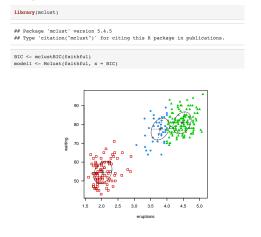
Model-based clustering

- One disadvantage of hierarchical clustering and k-means is that they are largely heuristic and not based on formal statistical models. Formal inference is not possible
- Model-based clustering is an alternative:
 - Sample observations arise from a mixture distribution of two or more components
 - Each component (cluster) is described by a probability distribution and has an associated probability in the mixture.
 - In Gaussian mixture models, we assume each cluster follows a multivariate normal distribution
 - Therefore, in Gaussian mixture models, the model for clustering is a mixture of multivariate normal distributions

Classification & Cluster Analysis
Model-based clustering

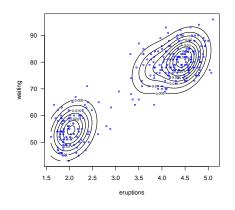
Notes

Fitting a Gaussian Mixture Model in R



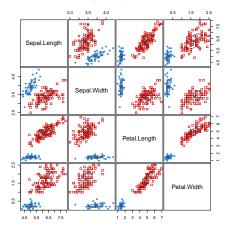
Notes

Fitting a Gaussian Mixture Model in R Cond't



Classification & Cluster Analysis
CLEMS
Model-based clustering
25.35

Model-Based Clustering Analysis for Iris Data



Classification & Cluster Analysis
UNIVERSITY
Model-based clustering
25.37

Notes

Notes