Lecture 26

Time Series Analysis

STAT 8020 Statistical Methods II December 1, 2020 Analysis

CLEMS THE STATE OF THE STATE OF THE STATE OF TIME Series Data
Objectives of Time Series Analysis
Features of Times Series
Means &
Autocovariances
A Case Study

Whitney Huang
Clemson University

Agenda

- **1** Time Series Data
- **2** Objectives of Time Series Analysis
- Features of Times Series
- Means & Autocovariances
- 6 A Case Study

Features of Times Series Means & Autocovariances A Case Study

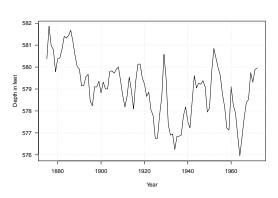
26.2

Notes

Notes

Level of Lake Huron 1875-1972

Annual measurements of the level of Lake Huron in feet. [Source: Brockwell & Davis, 1991]

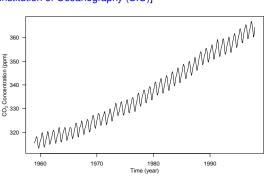


Time Series Analysis CLEMS UNIVERSITY
Time Series Data

Notes			

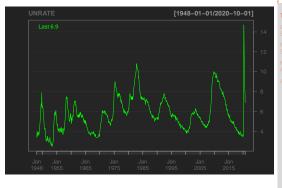
Mauna Loa Atmospheric CO_2 Concentration

Monthly atmospheric concentrations of CO_2 at the Mauna Loa Observatory [Source: Keeling & Whorf, Scripps Institution of Oceanography (SIO)]



Notes			

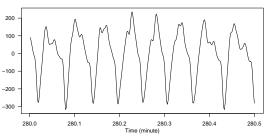
US Unemployment Rate 1948 Jan. - 2020 Oct.



Notes

Airflow Signal

A "normal" patient's 100 Hz sleep airflow signal [Source: Huang et al. 2020+]



Notes			

Time Series Data & Models

- A time series is a set of observations made sequentially in time
- Time series analysis is the area of statistics which deals with the analysis of dependency between different observations in time series data
- \bullet A time series model is a probabilistic model that describes ways that the series data $\{y_t\}$ could have been generated
- More specifically, a time series model is usually a probability model for $\{Y_t:t\in T\}$, a collection of random variables indexed in time

Notes			

Some Objectives of Time Series Analysis

- Find a statistical model that adequately explains the dependence observed in a time series
- To conduct statistical inferences, e.g., Is there evidence of a decreasing trend in the Lake Huron depths?
- To forecast future values of the time series based on those we have already observed

Notes				

Features of Times Series

- Trends
 - ullet One can think of trend, μ_t as continuous changes, usually in the mean, over longer time scales
 - Usually the form of the trend is unknown and needs to be estimated. When the trend is removed, we obtain a detrended series
- Seasonal or periodic components
 - A seasonal component s_t constantly repeats itself in time, i.e., $s_t = s_{t+kd}$
 - \bullet We need to estimate the form and/or the period d of the seasonal component to $\mbox{deseasonalize}$ the series
- The "noise" process
 - The noise process, η_t , is the component that is neither trend nor seasonality
 - We will focus on finding plausible (typically stationary) statistical models for this process

ne Series			
inalysis	Notes		
res of Times			

Combining Trend μ_t , Seasonality s_t , and Noise η_t Together

There are two commonly used approaches

• Additive model:

$$y_t = \mu_t + s_t + \eta_t$$

• Multiplicative model:

$$y_t = \mu_t s_t \eta_t$$

If all $\{y_t\}$ are positive then we obtain the additive model by taking logarithms:

$$\log y_t = \log \mu_t + \log s_t + \log \eta_t$$

Notes

Means, Autocovariances, and Stationary Processes

ullet The mean function of $\{Y_t\}$ is

$$\mu_t = \mathrm{E}[Y_t], \quad t \in T$$

ullet The autocovariance function of $\{Y_t\}$ is

$$\gamma(t, t') = \text{Cov}(Y_t, Y_{t'}) = \text{E}[(Y_t - \mu_t)(Y_{t'} - \mu_{t'})], \quad t, t' \in T$$

When $t=t^{\prime}$ we obtain $\gamma(t,t') = \operatorname{Cov}(Y_t,Y_t) = \operatorname{Var}(Y_t) = \sigma_t^2,$ the variance function of Y_t

Notes

Notes

Autocorrelation Function

The autocorrelation function (ACF) of $\{Y_t\}$ is

$$\rho(t,t') = \operatorname{Corr}(Y_t,Y_{t'}) = \frac{\gamma(t,t')}{\sqrt{\gamma(t,t)\gamma(t',t')}}$$

It measures the strength of linear association between Y_t and $Y_{t'}$

Properties:

- $0 -1 \le \rho(t, t') \le 1, \quad t, t' \in T$

Stationary Processes

We will still try to keep our models for $\{\eta_t\}$ as simple as possible by assuming stationarity, meaning that some characteristic of $\{\eta_t\}$ does not depend on the time points, only on the "time lag" between time points:

$$\bullet \ \mathrm{E}[\eta_t] = 0, \quad \forall t \in T$$

$$Cov(\eta_t, \eta_{t'}) = \gamma(t' - t) = Cov(\eta_{t+s}, \eta_{t'+s})$$

 \Rightarrow autocorrelation function (ACF):

$$\rho(h) = \frac{\gamma(h)}{\gamma(0)}$$

Time Series Analysis
CLEMS
UNIVERSIT
Means & Autocovariances

Autoregressive Moving Average (ARMA) Models

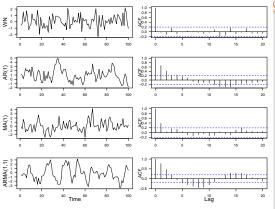
Let $\{Z_t\}$ be independent and identical random variables that follow $N(0, \sigma^2)$

- Moving Average Processes (MA(q)): $\eta_t = Z_t + \theta_1 Z_{t-1} + \theta_2 Z_{t-2} \cdots + \theta_q Z_{t-q}$
- Autoregressive Processes (AR(p)): $\eta_t = \phi_1 \eta_{t-1} + \phi_2 \eta_{t-2} + \dots + \phi_p \eta_{t-p} + Z_t$
- Autoregressive Moving Average Processes $\begin{array}{l} \mathsf{ARMA}(\mathsf{p},\mathsf{q}) \colon \eta_t = \phi_1 \eta_{t-1} + \phi_2 \eta_{t-2} + \dots + \phi_p \eta_{t-p} + \\ Z_t + \theta_1 Z_{t-1} + \theta_2 Z_{t-2} + \dots + \theta_q Z_{t-q} \end{array}$

Notes

Notes

Autocorrelation Plot



Lake Huron Case Study

Source: https://www.worldatlas.com/articles/what-states-border-lake-huron.html

- Detrending
- Model selection and fitting
- Forecasting

See R lab 22 for a demo

Notes	
Notes	
Notes	