#### Lecture 4

Simple Linear Regression IV Reading: Chapter 11

STAT 8020 Statistical Methods II September 1, 2020

> Whitney Huang Clemson University



Notes

#### Agenda

- Analysis of Variance (ANOVA) Approach to Regression
- 2 Correlation and Coefficient of Determination
- Residual Analysis: Model Diagnostics and Remedies



| Notes |  |  |  |
|-------|--|--|--|
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |

### ANOVA Approach to Linear Regression

| Simple Linear<br>Regression IV                               |
|--------------------------------------------------------------|
| Analysis of<br>Variance (ANOVA)<br>Approach to<br>Regression |
|                                                              |
|                                                              |

| Notes |  |  |  |
|-------|--|--|--|
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |

#### Analysis of Variance (ANOVA) Approach to Regression

#### **Partitioning Sums of Squares**

• Total sums of squares in response

$$\mathsf{SST} = \sum_{i=1}^n (Y_i - \bar{Y})^2$$

We can rewrite SST as

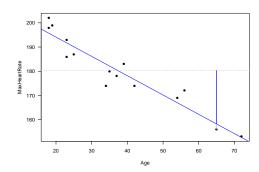
$$\sum_{i=1}^{n} (Y_i - \bar{Y})^2 = \sum_{i=1}^{n} (Y_i - \hat{Y}_i + \hat{Y}_i - \bar{Y})^2$$

$$= \underbrace{\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2}_{\text{Error}} + \underbrace{\sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2}_{\text{Model}}$$

| Simple Linear<br>Regression IV                               |
|--------------------------------------------------------------|
| CLEMS *                                                      |
| Analysis of<br>Variance (ANOVA)<br>Approach to<br>Regression |
|                                                              |
|                                                              |
|                                                              |
|                                                              |
|                                                              |

| Notes |  |  |  |
|-------|--|--|--|
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |

#### **Partitioning Total Sums of Squares**



| Simple Linear<br>Regression IV                               |
|--------------------------------------------------------------|
| Analysis of<br>Variance (ANOVA)<br>Approach to<br>Regression |
|                                                              |
|                                                              |
|                                                              |
|                                                              |

| Notes |  |  |  |
|-------|--|--|--|
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |

#### **Total Sum of Squares: SST**

• If we ignored the predictor X, the  $\bar{Y}$  would be the best (linear unbiased) predictor

$$Y_i = \beta_0 + \varepsilon_i \tag{1}$$

- SST is the sum of squared deviations for this predictor (i.e.,  $\bar{Y}$ )
- The total mean square is  ${\rm SST}/(n-1)$  and represents an unbiased estimate of  $\sigma^2$  under the model (1).

| CLEMS                                                      |
|------------------------------------------------------------|
| Analysis of<br>Variance (ANOV<br>Approach to<br>Regression |
|                                                            |
|                                                            |

| notes |  |  |  |
|-------|--|--|--|
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
| -     |  |  |  |

#### **Regression Sum of Squares: SSR**

- SSR:  $\sum_{i=1}^{n} (\hat{Y}_i \bar{Y})^2$
- Degrees of freedom is 1 due to the inclusion of the slope, i.e.,

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i \tag{2}$$

• "Large" MSR = SSR/1 suggests a linear trend, because

$$E[MSE] = \sigma^2 + \beta_1^2 \sum_{i=1}^{n} (X_i - \bar{X})^2$$

|     | mpl |    |   | ar<br>IV |   |
|-----|-----|----|---|----------|---|
| CL  | E١  | AS | 3 |          | J |
| N I | V E | R  | S | T        | Y |

#### Notes

**Error Sum of Squares: SSE** 

• SSE is simply the sum of squared residuals

$$SSE = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

- Degrees of freedom is n-2 (Why?)
- SSE large when |residuals| are "large"  $\Rightarrow Y_i$ 's vary substantially around fitted regression line
- ullet MSE = SSE/(n-2) and represents an unbiased estimate of  $\sigma^2$  when taking X into account



Notes

**ANOVA Table and F test** 

Source  $\begin{array}{ll} \text{1} & \text{SSR} = \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2 \\ n-2 & \text{SSE} = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 \\ n-1 & \text{SST} = \sum_{i=1}^{n} (Y_i - \bar{Y})^2 \end{array}$ MSR = SSR/1 Model MSE = SSE/(n-2)Error Total

- Goal: To test  $H_0: \beta_1 = 0$
- $\bullet \ \ \text{Test statistics} \ F^* = \tfrac{\text{MSR}}{\text{MSE}}$
- If  $\beta_1=0$  then  $F^*$  should be near one  $\Rightarrow$  reject  $H_0$ when  $F^*$  "large"
- We need sampling distribution of  $F^*$  under  $H_0 \Rightarrow$  $F_{1,n-2}$ , where  $F(d_1,d_2)$  denotes a F distribution with degrees of freedom  $d_1$  and  $d_2$

|  | Notes |
|--|-------|

| Analysis of<br>Variance (ANOVA)<br>Approach to<br>Regression |
|--------------------------------------------------------------|
| Correlation and<br>Coefficient of<br>Determination           |
|                                                              |

#### **F Test:** $H_0: \beta_1=0$ vs. $H_a: \beta_1\neq 0$

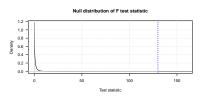
fit <- lm(MaxHeartRate ~ Age) anova(fit)

Analysis of Variance Table

Response: MaxHeartRate

Df Sum Sq Mean Sq F value 1 2724.50 2724.50 130.01 Residuals 13 272.43 20.96

Pr(>F) 3.848e-08 \*\*\* Age





# Notes

#### SLR: F-Test vs. T-test

#### ANOVA Table and F-Test

Analysis of Variance Table

Response: MaxHeartRate

Df Sum Sq Mean Sq 1 2724.50 2724.50 Age Residuals 13 272.43 20.96

F value Pr(>F) 130.01 3.848e-08

Parameter Estimation and T-Test

#### ${\tt Coefficients:}$

Estimate Std. Error t value Pr(>|t|) (Intercept) 210.04846 2.86694 73.27 < 2e-16 -0.79773 0.06996 -11.40 3.85e-08 Age



Notes

Correlation and Coefficient of Determination

| Simple Linear<br>Regression IV                     |
|----------------------------------------------------|
| CLEMS#N                                            |
| UNIVERSIT                                          |
|                                                    |
| Correlation and<br>Coefficient of<br>Determination |
|                                                    |
|                                                    |
|                                                    |
|                                                    |
|                                                    |

| Notes |  |  |  |
|-------|--|--|--|
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |

#### **Correlation and Simple Linear Regression**

- Pearson Correlation:  $r = \frac{\sum_{i=1}^n (X_i \bar{X})(Y_i \bar{Y})}{\sqrt{\sum_{i=1}^n (X_i \bar{X})^2 \sum_{i=1}^n (Y_i \bar{Y})^2}}$
- ullet  $-1 \le r \le 1$  measures the strength of the **linear** relationship between Y and X
- We can show

$$r = \hat{\beta}_1 \sqrt{\frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}},$$

this implies

$$\beta_1 = 0$$
 in SLR  $\Leftrightarrow \rho = 0$ 



#### Coefficient of Determination $R^2$

 Defined as the proportion of total variation explained by SLR

$$R^2 = \frac{\sum_{i=1}^n (\hat{Y}_i - \bar{Y})^2}{\sum_{i=1}^n (Y_i - \bar{Y})^2} = \frac{\text{SSR}}{\text{SST}} = 1 - \frac{\text{SSE}}{\text{SST}}$$

• We can show  $r^2 = R^2$ :

$$\begin{split} r^2 &= \left(\hat{\beta}_{1,\text{LS}} \sqrt{\frac{\sum_{i=1}^n (X_i - \bar{X})^2}{\sum_{i=1}^n (Y_i - \bar{Y})^2}}\right)^2 \\ &= \frac{\hat{\beta}_{1,\text{LS}}^2 \sum_{i=1}^n (X_i - \bar{X})^2}{\sum_{i=1}^n (Y_i - \bar{Y})^2} \\ &= \frac{\text{SSR}}{\text{SST}} \\ &= R^2 \end{split}$$



Analysis of Variance (ANOVA) Approach to

Correlation and Coefficient of Determination

Residual Analysis: Model Diagnostics

...

#### Notes

Notes

Maximum Heart Rate vs. Age: r and  $R^2$ 

> summary(fit)\$r.squared
[1] 0.9090967
> cor(Age, MaxHeartRate)
[1] -0.9534656

#### Interpretation:

There is a strong negative linear relationship between <code>MaxHeartRate</code> and <code>Age. Furthermore</code>,  $\sim 91\%$  of the variation in <code>MaxHeartRate</code> can be explained by <code>Age.</code>

|  |   | in<br>or |   |   |
|--|---|----------|---|---|
|  | Ņ | S        | ì | J |

Analysis of Variance (ANOVA) Approach to

Correlation and Coefficient of

Residual Analysis: Model Diagnostics and Remedies

| Notes |  |  |  |   |
|-------|--|--|--|---|
|       |  |  |  |   |
|       |  |  |  |   |
|       |  |  |  | _ |
|       |  |  |  |   |
|       |  |  |  |   |
|       |  |  |  |   |
|       |  |  |  |   |
|       |  |  |  | _ |
|       |  |  |  |   |

## Residual Analysis: Model Diagnostics and Remedies



#### Residuals

• The residuals are the differences between the observed and fitted values:

$$e_i = Y_i - \hat{Y}_i,$$

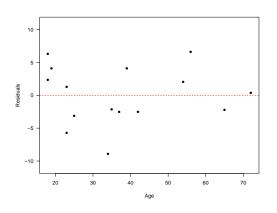
where  $\hat{Y}_i = \hat{eta}_0 + \hat{eta}_1 X_i$ 

- $e_i$  is NOT the error term  $\varepsilon_i = Y_i \mathrm{E}[Y_i]$
- Residuals are very useful in assessing the appropriateness of the assumptions on  $\varepsilon_i$ . Recall
  - $E[\varepsilon_i] = 0$
  - $Var[\varepsilon_i] = \sigma^2$
  - $\operatorname{Cov}[\varepsilon_i, \varepsilon_j] = 0, \quad i \neq j$

| impl<br>legre |      |   |   |
|---------------|------|---|---|
| ĘŅ            | ۸ٍSٍ | * | Ņ |

#### Notes

Maximum Heart Rate vs. Age Residual Plot:  $\varepsilon$  vs. X





| Notes |  |  |
|-------|--|--|
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |

#### **Interpreting Residual Plots**

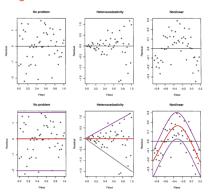
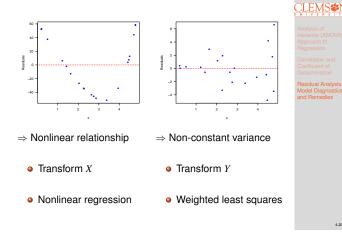


Figure: Figure courtesy of Faraway's Linear Models with R (2005, p. 59).

| Simple Linear<br>Regression IV                          |
|---------------------------------------------------------|
| CLEMS#N                                                 |
|                                                         |
|                                                         |
| Residual Analysis:<br>Model Diagnostics<br>and Remedies |
|                                                         |
|                                                         |
|                                                         |
|                                                         |
|                                                         |

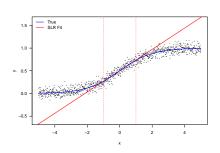
## Notes

#### **Model Diagnostics and Remedies**



| Notes |  |  |  |
|-------|--|--|--|
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |

#### **Extrapolation in SLR**



Extrapolation beyond the range of the given data can lead to seriously biased estimates if the assumed relationship does not hold the region of extrapolation

| Simple Linear<br>Regression IV                          |  |  |  |  |
|---------------------------------------------------------|--|--|--|--|
| CLEMS N                                                 |  |  |  |  |
|                                                         |  |  |  |  |
|                                                         |  |  |  |  |
| Residual Analysis:<br>Model Diagnostics<br>and Remedies |  |  |  |  |
|                                                         |  |  |  |  |
|                                                         |  |  |  |  |
|                                                         |  |  |  |  |

| Notes |  |  |  |
|-------|--|--|--|
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |

#### **Summary of SLR**

• Model:  $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$ 

• Estimation: Use the method of least squares to estimate the parameters

Inference

Hypothesis Testing

Confidence/prediction Intervals

ANOVA

Model Diagnostics and Remedies

| Simple Linear<br>Regression IV                         |
|--------------------------------------------------------|
| CLEMS .                                                |
|                                                        |
|                                                        |
| Residual Analysis<br>Model Diagnostics<br>and Remedies |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
| 4.2                                                    |

| Notes |      |                                       |      |
|-------|------|---------------------------------------|------|
|       |      |                                       |      |
| -     |      |                                       |      |
|       |      |                                       |      |
|       |      |                                       |      |
|       |      |                                       |      |
|       |      |                                       |      |
|       |      |                                       |      |
|       |      |                                       |      |
|       |      |                                       |      |
|       |      |                                       |      |
|       |      |                                       |      |
|       |      |                                       |      |
|       |      |                                       |      |
|       |      |                                       |      |
|       |      |                                       |      |
|       |      |                                       |      |
| Notes |      |                                       |      |
|       |      |                                       |      |
|       |      |                                       |      |
|       |      |                                       |      |
|       |      |                                       |      |
|       |      |                                       |      |
|       |      |                                       |      |
|       |      |                                       |      |
|       |      |                                       |      |
|       |      |                                       |      |
|       |      |                                       |      |
|       |      |                                       |      |
|       |      |                                       |      |
|       |      |                                       |      |
|       |      |                                       |      |
|       |      |                                       |      |
|       |      |                                       |      |
| Notes |      |                                       |      |
|       |      |                                       |      |
|       |      |                                       |      |
|       |      |                                       |      |
|       |      |                                       |      |
|       |      |                                       |      |
|       |      |                                       |      |
|       |      |                                       |      |
|       |      |                                       |      |
|       |      |                                       |      |
|       |      |                                       |      |
|       | <br> | · · · · · · · · · · · · · · · · · · · | <br> |