Lecture 5 Multiple Linear Regression I

Reading: Chapter 12

STAT 8020 Statistical Methods II September 3, 2020

Notes

Whitney Huang Clemson University

Agenda	Multiple Linear Regression I
Multiple Linear Regression	
2 Estimation & Inference	
General Linear Test	
Multicollinearity	

Regression I	

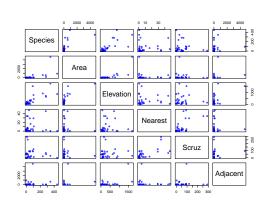
Notes

Multiple Linear Regression (MLR)

Goal: To model the relationship between two or more explanatory variables (X's) and a response variable (Y)by fitting a linear equation to observed data:

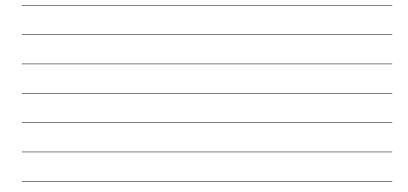
 $Y_i = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_{p-1} X_{p-1} + \varepsilon_i, \quad \varepsilon_i \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \sigma^2)$

Example: Species diversity on the Galapagos Islands. We are interested in studying the relationship between the number of plant species (Species) and the following geographic variables: Area, Elevation, Nearest, Scruz, Adjacent.


ata: Spe	cies Di	versi	ity on	the Ga	alapa	gos	Islands
	Species E	ndemics		Elevation	Nearest	Scruz	
Baltra	58		25.09	346	0.6	0.6	1.84
Bartolome	31		1.24	109	0.6	26.3	572.33
Caldwell			0.21	114	2.8	58.7	0.78
Champion	25		0.10	46	1.9	47.4	0.18
Coamano			0.05		1.9	1.9	903.82
Daphne.Major	18		0.34	119	8.0	8.0	1.84
Daphne.Minor	24	0	0.08	93	6.0	12.0	0.34
Darwin	10		2.33	168	34.1	290.2	2.85
den			0.03		0.4	0.4	17.95
Enderby			0.18	112	2.6	50.2	0.10
Espanola	97	26	58.27	198	1.1	88.3	0.57
ernandina	93	35	634.49	1494	4.3	95.3	4669.32
Gardner1	58		0.57	49	1.1	93.1	58.27
Gardner2			0.78	227	4.6	62.2	0.21
Genovesa	40	19	17.35	76	47.4	92.2	129.49
Isabela	347	89	4669.32	1707	0.7	28.1	634.49
larchena			129.49	343	29.1	85.9	59.56
Onslow			0.01	25	3.3	45.9	0.10
Pinta	104		59.56	777	29.1	119.6	129.49
Pinzon	108	33	17.95	458	10.7	10.7	0.03
.as.Plazas			0.23	94	0.5	0.6	25.09
Rabida	70	30	4.89	367	4.4	24.4	572.33
SanCristobal	280	65	551.62	716	45.2	66.6	0.57
SanSalvador	237	81	572.33	906	0.2	19.8	4.89
SantaCruz	444	95	903.82	864	0.6	0.0	0.52
SantaFe	62	28	24.08	259	16.5	16.5	0.52
SantaMaria	285		170.92	640	2.6	49.2	0.10
Seymour	44	16	1.84	147	0.6	9.6	25.09
Tortuga	16		1.24	186	6.8	50.9	17.95
Nolf	21	12	2.85	253	34.1	254.7	2.33

ļ	Multiple Linear Regression I CLEEMS
	Multiple Linear Regression

Notes



How Do Geographic Variables Affect Species Diversity?

Multiple Linear Regression I
CLEMS
Multiple Linear Regression

Notes

Let's Take a Look at the Correlation Matrix

> round(co	or(gala[,	, -2]),	3)			
	Species	Area	Elevation	Nearest	Scruz	Adjacent
Species	1.000	0.618	0.738	-0.014	-0.171	0.026
Area	0.618	1.000	0.754	-0.111	-0.101	0.180
Elevation	0.738	0.754	1.000	-0.011	-0.015	0.536
Nearest	-0.014	-0.111	-0.011	1.000	0.615	-0.116
Scruz	-0.171	-0.101	-0.015	0.615	1.000	0.052
Adjacent	0.026	0.180	0.536	-0.116	0.052	1.000

Multiple Linear Regression I COLLEMENT Regression Regression Estimation & nforence Beneral Linear fest

Model 1: Species $\sim \texttt{Elevation}$

Call:
lm(formula = Species ~ Elevation, data = gala)
승규가 같은 것은 것을 가지 않는 것을 다니 것을 가지 않는 것을 가지 않는 것을 하는 것을 하는 것을 가지 않는 것을 수 있다. 나는 것을 것을 수 있는 것을 것을 수 있다. 나는 것을 것을 수 있는 것을 것을 수 있다. 나는 것을 것을 수 있다. 나는 것을 것을 것을 것을 수 있다. 나는 것을 것을 것을 것을 것을 것을 수 있다. 나는 것을 수 있다. 나는 것을
Residuals:
Min 10 Median 30 Max
-218.319 -30.721 -14.690 4.634 259.180
Coefficients:
Estimate Std. Error t value Pr(> t)
(Intercept) 11.33511 19.20529 0.590 0.56
Elevation 0.20079 0.03465 5.795 3.18e-06 ***
방법 지난 것 것 같은 것 같아요. 한 것 같아요. 방법 그는 것 것 같아요. 것 같아요. 것 같아요. 것 같아요. 이 것 같아요. ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
것같은 동안에 물질을 알았다. 관계에 물건을 얻을 것이라. 것은 것을 가 봐.
Residual standard error: 78.66 on 28 degrees of freedom
Multiple R-squared: 0.5454, Adjusted R-squared: 0.5
F-statistic: 33.59 on 1 and 28 DF, p-value: 3.177e-06

291

Notes

-		

Model 2: Species $\sim \texttt{Elevation} + \texttt{Area}$

Call:
lm(formula = Species ~ Elevation + Area, data = gala)
Residuals: Min 1Q Median 3Q Max -192.619 -33.534 -19.199 7.541 261.514
Coefficients:
Estimate Std. Error t value Pr(> t)
(Intercept) 17.10519 20.94211 0.817 0.42120
Elevation 0.17174 0.05317 3.230 0.00325 **
Area 0.01880 0.02594 0.725 0.47478
승규는 잘 한 것에서 한 것을 알 것 같아. 한 것은 것은 것을 수 있는 것 같아. 한 것 같아.
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 79.34 on 27 degrees of freedom Multiple R-squared: 0.554, Adjusted R-squared: 0.521 F-statistic: 16.77 on 2 and 27 DF, p-value: 1.843e-05

Multiple Linear Regression Estimation & Inference General Linear Fest Multicollinearity

Multiple Linea

Notes

Model 3: Species $\sim \texttt{Elevation} + \texttt{Area} + \texttt{Adjacent}$

	: 1Q -34.283					
Coefficie	nts:					
	Estimate	Std. Err	or t val	Lue Pr(>1	tI)	
Intercep	t) -5.71893	16.907	06 -0.3	338 0.73	789	
levation	0.31498	0.052	11 6.0	044 2.2e	-06 ***	
Area	-0.02031	0.021	.81 -0.9	0.36	034	
Adjacent	-0.07528	0.016	98 -4.4	134 0.00	015 ***	
Signif. c	odes: 0 '*	**' 0.001	·**' 0.	.01'*'0	.05'.'0.	1''1

Notes

Multiple Linear

"Full Model"

lm(formula = Species ~ Area + Elevation + Nearest + Scruz + Adjacent,
data = gala)
Residuals:
Min 10 Median 30 Max
-111.679 -34.898 -7.862 33.460 182.584
Coefficients:
Estimate Std. Error t value Pr(>ItI)
(Intercept) 7.068221 19.154198 0.369 0.715351
Area -0.023938 0.022422 -1.068 0.296318
Elevation 0.319465 0.053663 5.953 3.82e-06
Nearest 0.009144 1.054136 0.009 0.993151
Scruz -0.240524 0.215402 -1.117 0.275208
Adjacent -0.074805 0.017700 -4.226 0.000297
(Intercept)
Area
Elevation ***
Nearest
Scruz
Adjacent ***
Signif. codes:
0 `****' 0.001 `***' 0.01 `**' 0.05 `.' 0.1 ` ' 1
Residual standard error: 60.98 on 24 degrees of freedom
Multiple R-squared: 0.7658, Adjusted R-squared: 0.7171
F-statistic: 15.7 on 5 and 24 DF, p-value: 6.838e-07

	Multiple Linear Regression I
l	
	Multiple Linear Regression

5.10

Notes

Notes

MLR Topics

Similar to SLR, we will discuss

- Estimation
- Inference
- Diagnostics and Remedies

We will also discuss some new topics

- Model Selection
- Multicollinearity

CLEMS
JNIVERSIT
Multiple Linear Regression

Multiple Linear

Multiple Linear Regression in Matrix Notation Multiple Linear Regression (MLR):

$$\begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{pmatrix} = \begin{pmatrix} 1 & X_{1,1} & X_{2,1} & \cdots & X_{p-1,1} \\ 1 & X_{1,2} & X_{2,2} & \cdots & X_{p-1,2} \\ \vdots & \cdots & \ddots & \vdots & \vdots \\ 1 & X_{1,n} & X_{2,n} & \cdots & X_{p-1,n} \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_{p-1} \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_r \end{pmatrix}$$

We can express MLR as

$$Y = X\beta + \varepsilon$$

Error Sum of Squares (SSE) = $\sum_{i=1}^{n} (Y_i - \beta_0 - \sum_{j=1}^{p-1} \beta_j X_j)^2$ can be expressed in matrix notation as:

$$(\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta})^T (\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta})$$

Again, we are going to find $\hat{\beta}$ to minimize SSE as our estimate for β

Multiple Linear Regression I
Multiple Linear Regression

Estimation of Regression Coefficients

• The resulting least squares estimate is

$$\hat{oldsymbol{eta}} = \left(oldsymbol{X}^T oldsymbol{X}
ight)^{-1} oldsymbol{X}^T oldsymbol{Y}$$

Fitted values:

$$\hat{\boldsymbol{Y}} = \boldsymbol{X}\hat{\boldsymbol{\beta}} = \boldsymbol{X} \left(\boldsymbol{X}^T\boldsymbol{X}\right)^{-1} \boldsymbol{X}^T\boldsymbol{Y} = \boldsymbol{H}\boldsymbol{Y}$$

Residuals:

 $\boldsymbol{e} = \boldsymbol{Y} - \boldsymbol{\hat{Y}} = (\boldsymbol{I} - \boldsymbol{H})\boldsymbol{Y}$

Multiple Linear Regression I
Estimation & Inference

Notes

Estimation of σ^2

• Similar approach as we did in SLR

$$\hat{\sigma}^2 = \frac{e^T e}{n - p}$$
$$= \frac{(\mathbf{Y} - \mathbf{X}\hat{\beta})^T (\mathbf{Y} - \mathbf{X}\hat{\beta})}{n - p}$$
$$= \frac{SSE}{n - p}$$
$$= MSE$$

Multiple Linea

5.15

Notes

ANOVA Table

					CLEMS
Source	df	SS	MS	F Value	
Model	p - 1	SSR	MSR = SSR/(p-1)	MSR/MSE	Estimation & Inference
Error	n-p	SSE	MSE = SSE/(n-p)		General Linear
Total	n-1	SST			
collec	tively he	elp expl	redictors $\{X_1, \cdots, X_p\}$ ain the variation in Y $\cdot = \beta_{p-1} = 0$	_1}	

- H_a : at least one $\beta_k \neq 0$, $1 \leq k \leq p-1$
- $\bullet \ F^* = \tfrac{\mathrm{MSR}}{\mathrm{MSE}} = \tfrac{\mathrm{SSR}/(p-1)}{\mathrm{SSE}/(n-p)} \overset{H_0}{\sim} F(p-1,n-p)$
- Reject H_0 if $F^* > F(1 \alpha, p 1, n p)$

Testing Individual Predictor

- We can show that $\hat{\boldsymbol{\beta}} \sim N_p \left(\boldsymbol{\beta}, \sigma^2 \left(\boldsymbol{X}^T \boldsymbol{X} \right)^{-1} \right) \Rightarrow \hat{\beta}_k \sim N(\beta_k, \sigma_{\hat{\beta}_k}^2)$
- Perform t test:
 - $H_0: \beta_k = 0$ vs. $H_a: \beta_k \neq 0$
 - $\bullet \ \ \frac{\hat{\beta}_k \beta_k}{\hat{\sigma}_{\hat{\beta}_k}} \sim t_{n-p} \Rightarrow t^* = \frac{\hat{\beta}_k}{\hat{\sigma}_{\hat{\beta}_k}} \overset{H_0}{\sim} t_{n-p}$
 - Reject H_0 if $|t^*| > t_{1-\alpha/2,n-p}$
- Confidence interval for β_k : $\hat{\beta}_k \pm t_{1-\alpha/2,n-p} \hat{\sigma}_{\hat{\beta}_k}$

Multiple Linear Regression I
CLEMS
Estimation & Inference

tiple Linea

Notes

Coefficient of Determination

• Coefficient of Determination R^2 describes proportional of the variance in the response variable that is predictable from the predictors

 $R^2 = \frac{\mathsf{SSR}}{\mathsf{SST}} = 1 - \frac{\mathsf{SSE}}{\mathsf{SSR}}, \quad 0 \le R^2 \le 1$

- R^2 usually increases with the increasing p, the number of the predictors
 - Adjusted $R^2,$ denoted by $R^2_{\rm adj} = \frac{{\rm SSR}/(n-p)}{{\rm SST}/(n-1)}$ attempts to account for p

Notes

R^2 vs. R^2_{adj} Example

Suppose the true relationship between response Y and predictors $\left(X_{1},X_{2}\right)$ is

$$Y = 5 + 2X_1 + \varepsilon,$$

where $\varepsilon \sim N(0, 1)$ and X_1 and X_2 are independent to each other. Let's fit the following two models to the "data"

 $\begin{array}{l} \mbox{Model 1: } Y=\beta_0+\beta_1X_1+\varepsilon^1\\ \mbox{Model 2: } Y=\beta_0+\beta_1X_1+\beta_2X_2+\varepsilon^2 \end{array} \end{array}$

Question: Which model will "win" in terms of R^2 ?

Autiple Linear Regression & Testimation & Terence Seneral Linear fest Multicollinearity

tiple Linea

Model 1 Fit

> summary(fit1) Call:

 $lm(formula = y \sim x1)$

Residuals: Min 1Q Median 3Q Max -1.6085 -0.5056 -0.2152 0.6932 2.0118

Coefficients:

 Estimate Std. Error t value Pr(>ltl)

 (Intercept) 5.1720
 0.1534
 33.71
 < 2e-16</td>

 x1
 1.8660
 0.1589
 11.74
 2.47e-12

 ---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8393 on 28 degrees of freedom Multiple R-squared: 0.8313, Adjusted R-squared: 0.8253 F-statistic: 138 on 1 and 28 DF, p-value: 2.467e-12

Multiple Linear Regression I
CLEMS
Estimation & Inference

Notes

Model 2 Fit

>	summary(fit2)	
---	---------------	--

Call: $lm(formula = y \sim x1 + x2)$

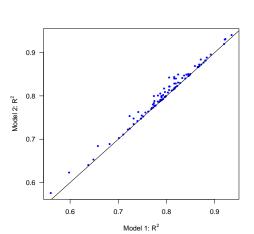
 R^2 : Model 1 vs. Model 2

Residuals: Min 1Q Median 3Q Max -1.3926 -0.5775 -0.1383 0.5229 1.8385

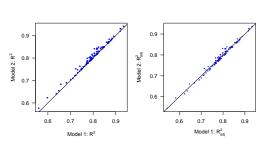
Coefficients:

Estimate Std. Error t value Pr(>|t|)
 (Intercept)
 5.1792
 0.1518
 34.109
 < 2e-16</th>

 x1
 1.8994
 0.1593
 11.923
 2.88e-12


 x2
 -0.2289
 0.1797
 -1.274
 0.213
 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8301 on 27 degrees of freedom Multiple R-squared: 0.8408, Adjusted R-squared: 0.8291 F-statistic: 71.32 on 2 and 27 DF, p-value: 1.677e-11


Multiple Linea

Notes

 R_{adi}^2 : Model 1 vs. Model 2

Multiple Linear Regression I
UNIVERSII
Estimation & Inference

Notes

Notes

General Linear Test

- Comparison of a "full model" and "reduced model" that involves a subset of full model predictors
- $\bullet\,$ Consider a full model with k predictors and reduced model with l predictors (l < k)
- Test statistic: $F^* = \frac{\text{SSE}(R) \text{SSE}(F)/(k-1)}{\text{SSE}(F)/(n-k-1)} \Rightarrow$ Testing H_0 that the regression coefficients for the extra variables are all zero

Regression I
LEMS
IVERSIT
eneral Linear est

Multiple Linear

Species Diversity on the Galapagos Islands Revisited: Reduce Model

<pre>> summary(gala_fit1)</pre>
Call: lm(formula = Species ~ Elevation)
lin(formula = species ~ Elevation)
Residuals:
Min 1Q Median 3Q Max
-218.319 -30.721 -14.690 4.634 259.180
Coefficients: Estimate Std. Error t value Pr(> t)
(Intercept) 11.33511 19.20529 0.590 0.56
Elevation 0.20079 0.03465 5.795 3.18e-06 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 78.66 on 28 degrees of freedom

Residual standard error: 78.66 on 28 degrees of freedom Multiple R-squared: 0.5454, Adjusted R-squared: 0.5291 F-statistic: 33.59 on 1 and 28 DF, p-value: 3.177e-06

Multiple Linear Regression I
CLEMS
General Linear Test

Species Diversity on the Galapagos Islands Revisited: Full Model

> summary(gala_fit2)
Call:
lm(formula = Species ~ Elevation + Area)
Residuals:
Min 1Q Median 3Q Max
-192.619 -33.534 -19.199 7.541 261.514
Coefficients:
Estimate Std. Error t value Pr(> t)
(Intercept) 17.10519 20.94211 0.817 0.42120
Elevation 0.17174 0.05317 3.230 0.00325 **
Area 0.01880 0.02594 0.725 0.47478
 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 79.34 on 27 degrees of freedom Multiple R-squared: 0.554, Adjusted R-squared: 0.521 F-statistic: 16.77 on 2 and 27 DF, p-value: 1.843e-05
· statistic. Ion i on E and Er bi, p-value. I.orse-05

Multiple Linear Regression I
General Linear Test

Notes

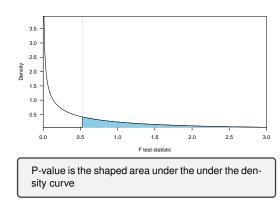
Perform a General Linear Test

- $H_0: \beta_{\text{Area}} = 0$ vs. $H_a: \beta_{\text{Area}} \neq 0$
- $F^* = \frac{(173254 169947)/(2-1)}{169947/(30-2-1)} = 0.5254$
- P-value: P[F > 0.5254] = 0.4748, where $F \sim F(1, 27)$

> anova(gala_fit1, gala_fit2)
Analysis of Variance Table

 Model
 1:
 Species
 Elevation

 Model
 2:
 Species
 Elevation + Area


 Res.Df
 RSS Df
 Sum of Sq
 F Pr(>F)

 1
 28
 173254
 3307
 0.5254
 0.4748

Notes

P-value Calculation

General Linear Test

Multicollinearity

Another Simulated Example: Suppose the true relationship between response Y and predictors (X_1, X_2) is

$$Y = 4 + 0.8X_1 + 0.6X_2 + \varepsilon,$$

where $\varepsilon \sim N(0,1)$ and X_1 and X_2 are positively correlated with $\rho = 0.9$. Let's fit the following model:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$$

Call: lm(formula = Y ~ X1 + X2) Residuals: Min 1Q Median 3Q Max -1.63912 -0.59978 0.01897 0.58691 1.74518
 Coefficients:

 Estimate Std. Error t value Pr(>Itl)

 (Intercept)
 4.0154
 0.1646
 24.390
 <2e-16</td>

 X1
 -0.1032
 0.3426
 -0.301
 0.766

 X2
 1.7471
 0.3654
 4.781
 5.48e-05

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8601 on 27 degrees of freedom Multiple R-squared: 0.8166, Adjusted R-squared: 0.803 F-statistic: 60.12 on 2 and 27 DF, p-value: 1.135e-10

Multicollinearity cont'd

- Numerical issue \Rightarrow the matrix $X^T X$ is nearly singular
- Statistical issue
 - β's are not well estimated
 - β 's may be meaningless
 - R² and predicted values are usually OK

Iultiple Linear CLEMS Aulticollinearity

Notes

LEMS Aulticollinearity

Multiple Linear

Notes