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5.3

Multiple Linear Regression (MLR)
Goal: To model the relationship between two or more
explanatory variables (X ’s) and a response variable (Y )
by fitting a linear equation to observed data:

Yi = β0+β1X1+β2X2+· · ·+βp−1Xp−1+εi, εi
i.i.d.∼ N(0, σ2)

Example: Species diversity on the Galapagos Islands.
We are interested in studying the relationship between
the number of plant species (Species) and the following
geographic variables: Area, Elevation, Nearest,
Scruz, Adjacent.

Notes

Notes

Notes
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5.4

Data: Species Diversity on the Galapagos Islands
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5.5

How Do Geographic Variables Affect Species Diversity?

Species
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Let’s Take a Look at the Correlation Matrix
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Notes

Notes
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5.7

Model 1: Species ∼ Elevation
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5.8

Model 2: Species ∼ Elevation + Area
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Model 3: Species ∼ Elevation + Area + Adjacent
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“Full Model”
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5.11

MLR Topics

Similar to SLR, we will discuss

Estimation

Inference

Diagnostics and Remedies

We will also discuss some new topics

Model Selection

Multicollinearity
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5.12

Multiple Linear Regression in Matrix Notation
Multiple Linear Regression (MLR):
Y1
Y2
...
Yn

 =


1 X1,1 X2,1 · · · Xp−1,1

1 X1,2 X2,2 · · · Xp−1,2
... · · · . . .

...
...

1 X1,n X2,n · · · Xp−1,n




β0
β1
...

βp−1

+


ε1
ε2
...
εn


We can express MLR as

Y =Xβ + ε

Error Sum of Squares (SSE)
=
∑n

i=1(Yi − β0 −
∑p−1

j=1 βjXj)
2 can be expressed in

matrix notation as:

(Y −Xβ)T (Y −Xβ)

Again, we are going to find β̂ to minimize SSE as
our estimate for β

Notes

Notes

Notes
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Estimation of Regression Coefficients

The resulting least squares estimate is

β̂ =
(
XTX

)−1
XTY

Fitted values:

Ŷ =Xβ̂ =X
(
XTX

)−1
XTY =HY

Residuals:

e = Y − Ŷ = (I −H)Y
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5.14

Estimation of σ2

Similar approach as we did in SLR

σ̂2 =
eTe

n− p

=
(Y −Xβ̂)T (Y −Xβ̂)

n− p

=
SSE
n− p

= MSE
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5.15

ANOVA Table

Source df SS MS F Value
Model p− 1 SSR MSR = SSR/(p− 1) MSR/MSE
Error n− p SSE MSE = SSE/(n-p)
Total n− 1 SST

F Test: Tests if the predictors {X1, · · · , Xp−1}
collectively help explain the variation in Y

H0 : β1 = β2 = · · · = βp−1 = 0

Ha : at least one βk 6= 0, 1 ≤ k ≤ p− 1

F ∗ = MSR
MSE = SSR/(p−1)

SSE/(n−p)
H0∼ F (p− 1, n− p)

Reject H0 if F ∗ > F (1− α, p− 1, n− p)

Notes

Notes

Notes
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Testing Individual Predictor

We can show that β̂ ∼ Np

(
β, σ2

(
XTX

)−1
)
⇒

β̂k ∼ N(βk, σ
2
β̂k
)

Perform t test:

H0 : βk = 0 vs. Ha : βk 6= 0

β̂k−βk
σ̂β̂k

∼ tn−p ⇒ t∗ = β̂k
σ̂β̂k

H0∼ tn−p

Reject H0 if |t∗| > t1−α/2,n−p

Confidence interval for βk: β̂k ± t1−α/2,n−pσ̂β̂k
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5.17

Coefficient of Determination

Coefficient of Determination R2 describes
proportional of the variance in the response variable
that is predictable from the predictors

R2 =
SSR
SST

= 1− SSE
SSR

, 0 ≤ R2 ≤ 1

R2 usually increases with the increasing p, the
number of the predictors

Adjusted R2, denoted by R2
adj =

SSR/(n−p)
SST/(n−1) attempts

to account for p
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5.18

R2 vs. R2
adj Example

Suppose the true relationship between response Y and
predictors (X1, X2) is

Y = 5 + 2X1 + ε,

where ε ∼ N(0, 1) and X1 and X2 are independent to
each other. Let’s fit the following two models to the “data"

Model 1: Y = β0 + β1X1 + ε1

Model 2: Y = β0 + β1X1 + β2X2 + ε2

Question: Which model will “win” in terms of R2?

Notes

Notes

Notes
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Model 1 Fit
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Model 2 Fit
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R2: Model 1 vs. Model 2
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R2
adj: Model 1 vs. Model 2
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General Linear Test

Comparison of a “full model” and “reduced model”
that involves a subset of full model predictors

Consider a full model with k predictors and reduced
model with l predictors (l < k )

Test statistic: F ∗ = SSE(R)−SSE(F )/(k−1)
SSE(F )/(n−k−1) ⇒ Testing H0

that the regression coefficients for the extra variables
are all zero
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Species Diversity on the Galapagos Islands Revisited:
Reduce Model

Notes

Notes

Notes



Multiple Linear
Regression I

Multiple Linear
Regression

Estimation &
Inference

General Linear
Test

Multicollinearity

5.25

Species Diversity on the Galapagos Islands Revisited:
Full Model
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5.26

Perform a General Linear Test

H0 : βArea = 0 vs. Ha : βArea 6= 0

F ∗ = (173254−169947)/(2−1)
169947/(30−2−1) = 0.5254

P-value: P[F > 0.5254] = 0.4748, where F ∼ F(1, 27)
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5.27

P-value Calculation

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

F test statistic

D
en

si
ty

P-value is the shaped area under the under the den-
sity curve

Notes

Notes
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Multicollinearity
Another Simulated Example: Suppose the true
relationship between response Y and predictors (X1, X2)
is

Y = 4 + 0.8X1 + 0.6X2 + ε,

where ε ∼ N(0, 1) and X1 and X2 are positively
correlated with ρ = 0.9. Let’s fit the following model:

Y = β0 + β1X1 + β2X2 + ε
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5.29

Multicollinearity cont’d

Numerical issue⇒ the matrix XTX is nearly
singular

Statistical issue

β’s are not well estimated

β’s may be meaningless

R2 and predicted values are usually OK

Notes

Notes

Notes
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