Lecture 5

Multiple Linear Regression I
Reading: Chapter 12

STAT 8020 Statistical Methods II

September 3, 2020

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Multiple Linear Regression (MLR)
Goal: To model the relationship between two or more explanatory variables (X 's) and a response variable (Y) by fitting a linear equation to observed data:
$Y_{i}=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\cdots+\beta_{p-1} X_{p-1}+\varepsilon_{i}, \quad \varepsilon_{i} \stackrel{i . i . d .}{\sim} \mathrm{N}\left(0, \sigma^{2}\right)$

Example: Species diversity on the Galapagos Islands We are interested in studying the relationship between the number of plant species (Species) and the following geographic variables: Area, Elevation, Nearest, Scruz, Adjacent.

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Data: Species Diversity on the Galapagos Islands

How Do Geographic Variables Affect Species Diversity?

Multiple Linear Regression 1
CLEMS

${ }^{5} 5$

Let's Take a Look at the Correlation Matrix

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Multiple Linea Regression I CLEMS

Multiple Linear
Regression
5
Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Model 2: Species ~Elevation + Area

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Model 3: Species \sim Elevation + Area + Adjacent

Multiple Linea Multiple Linear
Regression I
CLEMS\%
Multiple Linear
Regression Regression

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
"Full Model"

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

MLR Topics
Similar to SLR, we will discuss

- Estimation
- Inference
- Diagnostics and Remedies

We will also discuss some new topics

- Model Selection

Multiple Linear
Regression I
CLEM
Multiple Linear Regression

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Multiple Linear Regression I

Multiple Linear Regression in Matrix Notation Multiple Linear Regression (MLR):
$\left(\begin{array}{c}Y_{1} \\ Y_{2} \\ \vdots \\ Y_{n}\end{array}\right)=\left(\begin{array}{ccccc}1 & X_{1,1} & X_{2,1} & \cdots & X_{p-1,1} \\ 1 & X_{1,2} & X_{2,2} & \cdots & X_{p-1,2} \\ \vdots & \cdots & \ddots & \vdots & \vdots \\ 1 & X_{1, n} & X_{2, n} & \cdots & X_{p-1, n}\end{array}\right)\left(\begin{array}{c}\beta_{0} \\ \beta_{1} \\ \vdots \\ \beta_{p-1}\end{array}\right)+\left(\begin{array}{c}\varepsilon_{1} \\ \varepsilon_{2} \\ \vdots \\ \varepsilon_{n}\end{array}\right)$
We can express MLR as

$$
\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}
$$

Error Sum of Squares (SSE)
$=\sum_{i=1}^{n}\left(Y_{i}-\beta_{0}-\sum_{j=1}^{p-1} \beta_{j} X_{j}\right)^{2}$ can be expressed in matrix notation as:

$$
(\boldsymbol{Y}-\boldsymbol{X} \boldsymbol{\beta})^{T}(\boldsymbol{Y}-\boldsymbol{X} \boldsymbol{\beta})
$$

Again, we are going to find $\hat{\beta}$ to minimize SSE as our estimate for $\boldsymbol{\beta}$

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Estimation of Regression Coefficients

- The resulting least squares estimate is

$$
\hat{\boldsymbol{\beta}}=\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{Y}
$$

- Fitted values:

$$
\hat{\boldsymbol{Y}}=\boldsymbol{X} \hat{\boldsymbol{\beta}}=\boldsymbol{X}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{Y}=\boldsymbol{H} \boldsymbol{Y}
$$

- Residuals:

$$
e=\boldsymbol{Y}-\hat{\boldsymbol{Y}}=(\boldsymbol{I}-\boldsymbol{H}) \boldsymbol{Y}
$$

Estimation of σ^{2}

- Similar approach as we did in SLR

$$
\begin{aligned}
\hat{\sigma}^{2} & =\frac{\boldsymbol{e}^{T} \boldsymbol{e}}{n-p} \\
& =\frac{(\boldsymbol{Y}-\boldsymbol{X} \hat{\boldsymbol{\beta}})^{T}(\boldsymbol{Y}-\boldsymbol{X} \hat{\boldsymbol{\beta}})}{n-p} \\
& =\frac{\text { SSE }}{n-p} \\
& =\text { MSE }
\end{aligned}
$$

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Testing Individual Predictor

- We can show that $\hat{\boldsymbol{\beta}} \sim \mathrm{N}_{p}\left(\boldsymbol{\beta}, \sigma^{2}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1}\right) \Rightarrow$ $\hat{\beta}_{k} \sim \mathrm{~N}\left(\beta_{k}, \sigma_{\hat{\beta}_{k}}^{2}\right)$

- Perform t test:

- $H_{0}: \beta_{k}=0$ vs. $H_{a}: \beta_{k} \neq 0$
- $\frac{\hat{\beta}_{k}-\beta_{k}}{\hat{\sigma}_{\hat{\beta}_{k}}} \sim t_{n-p} \Rightarrow t^{*}=\frac{\hat{\beta}_{k}}{\hat{\sigma}_{\hat{\beta}_{k}}} \stackrel{H_{0}}{\sim} t_{n-p}$
- Reject H_{0} if $\left|t^{*}\right|>t_{1-\alpha / 2, n-p}$
- Confidence interval for $\beta_{k}: \hat{\beta}_{k} \pm t_{1-\alpha / 2, n-p} \hat{\sigma}_{\hat{\beta}_{k}}$

Coefficient of Determination

- Coefficient of Determination R^{2} describes proportional of the variance in the response variable that is predictable from the predictors

$$
R^{2}=\frac{\mathrm{SSR}}{\mathrm{SST}}=1-\frac{\mathrm{SSE}}{\mathrm{SSR}}, \quad 0 \leq R^{2} \leq 1
$$

- R^{2} usually increase with the increasing p, the number of the predictors
- Adjusted R^{2}, denoted by $R_{\text {adj }}^{2}=\frac{\mathrm{SSR} /(n-p)}{\mathrm{SST} /(n-1)}$ attempts to account for p
R^{2} vs. $R_{\text {adj }}^{2}$ Example

Suppose the true relationship between response Y and predictors $\left(X_{1}, X_{2}\right)$ is

$$
Y=5+2 X_{1}+\varepsilon
$$

where $\varepsilon \sim \mathrm{N}(0,1)$ and X_{1} and X_{2} are independent to each other. Let's fit the following two models to the "data"

Model 1: $Y=\beta_{0}+\beta_{1} X_{1}+\varepsilon^{1}$
Model 2: $Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\varepsilon^{2}$

Question: Which model will "win" in terms of R^{2} ?

Notes

\qquad
Multiple Linear
Regression 1
N \quad Notes

Notes
\qquad
\qquad

Notes

\qquad

Model 1 Fit
> summary(fit1)
Call:
$\operatorname{lm}($ formula $=\mathrm{y} \sim \mathrm{x} 1$)
Residuals:
Min $\quad 10$ Median $\quad 30 \quad$ Max
$-1.6085-0.5056-0.2152 \quad 0.6932 \quad 2.0118$
Coefficients:

	Estimate	Error	value	1)	
(Intercept)	5.1720	0.1534	33.71	< 2e-16	***
$\times 1$	1.8660	0.1589	11.74	$2.47 \mathrm{e}-12$	
Signif. code					
'***’ 0.00	$1^{\text {'**' }} 0$.	** 0.05	, 0.1	، ,	

Residual standard error: 0.8393 on 28 degrees of freedom
Multiple R-squared: 0.8313, Adjusted R-squared: 0.8253 F-statistic: 138 on 1 and 28 DF , p -value: $2.467 \mathrm{e}-12$

Model 2 Fit

> summary(fit2)
Call:
$\operatorname{lm}($ formula $=y \sim x 1+x 2)$

Residuals:				
Min	$1 Q$	Median	$3 Q$	Max
-1.3926	-0.5775	-0.1383	0.5229	1.8385

Coefficients:

| | Estimate Std. Error t value $\operatorname{Pr}(>\|t\|)$ | | | |
| :--- | ---: | ---: | ---: | ---: | ---: |
| (Intercept) | 5.1792 | 0.1518 | 34.109 | $<2 \mathrm{e}-16^{* * *}$ |
| $\times 1$ | 1.8994 | 0.1593 | 11.923 | $2.88 \mathrm{e}-12^{* * *}$ |
| $\times 2$ | -0.2289 | 0.1797 | -1.274 | 0.213 |

Signif. codes:
$0^{\prime * * *} 0.001$ ‘**' 0.01 '*' 0.05 '.' 0.1 ', 1
Residual standard error: 0.8301 on 27 degrees of freedom
Multiple R-squared: 0.8408, Adjusted R-squared: 0.8291 F-statistic: 71.32 on 2 and 27 DF, p-value: $1.677 \mathrm{e}-11$

Multiple Lineaa
Regression I

Regression I CLEMSern
Multiple Linear
Regression
Estimation \& Inference \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Multiple Linear
Regression I
CLEMS

Estimation \&
Estimation \&
Inference

Notes
\qquad 5.19

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Species Diversity on the Galapagos Islands Revisited: Full Model
> summary(gala_fit2)
Call:
m(formula = Species ~ Elevation + Area)

Residuals:				
Min	$1 Q$	Median	$3 Q$	Max
-192.619	-33.534	-19.199	7.541	261.514

Coefficients
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
Intercept) $17.10519 \quad 20.94211 \quad 0.817 \quad 0.42120$
$\begin{array}{lllll}\text { Elevation } & 0.17174 & 0.05317 & 3.230 & 0.00325 \text { ** }\end{array}$
$\begin{array}{lllll}\text { Area } & 0.01880 & 0.02594 & 0.725 & 0.47478\end{array}$
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05^{\prime} ' 0.1 ',
Residual standard error: 79.34 on 27 degrees of freedom Multiple R-squared: 0.554, Adjusted R-squared: 0.52 F-statistic: 16.77 on 2 and 27 DF, p-value: 1.843e-05

Multiple Linear Regression I CLEMSers
eneral Linear Test

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Perform a General Linear Test

- $H_{0}: \beta_{\text {Area }}=0$ vs. $H_{a}: \beta_{\text {Area }} \neq 0$
- $F^{*}=\frac{(173254-169947) /(2-1)}{169947 /(30-2-1)}=0.5254$
- P-value: $\mathrm{P}[F>0.5254]=0.4748$, where $F \sim \mathrm{~F}(1,27)$
> anova(gala_fit1, gala_fit2)
Analysis of Variance Table

Model 1: Species ~ Elevation
Model 2: Species ~ Elevation + Area
Res.Df RSS Df Sum of Sq F $\operatorname{Pr}(>F)$
$1 \quad 28 \quad 173254$
$\begin{array}{lllllll}1 & 27 & 169947 & 1 & 3307 & 0.5254 & 0.4748\end{array}$

Multiple Linear
Regression I
LEMS*
Muliple Linear
Regression
Estimation \&
nierence
General Linear
General Line

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

P-value is the shaped area under the under the density curve

Regression I CLEMS

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Multicollinearity
Another Simulated Example: Suppose the true relationship between response Y and predictors (X_{1}, X_{2}) is

$$
Y=4+0.8 X_{1}+0.6 X_{2}+\varepsilon
$$

where $\varepsilon \sim \mathrm{N}(0,1)$ and X_{1} and X_{2} are positively correlated with $\rho=0.9$. Let's fit the following model:

$$
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\varepsilon
$$

Call:
Imcformula
Residuals
$\begin{array}{rrrrr}\text { Min } & 10 & \text { Median } & 3 Q & \text { Max } \\ -1.63912 & -0.59978 & 0.01897 & 0.58691 & 1.74518\end{array}$
Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) ${ }^{4.0154} 0.1646 \quad 24.390<2 \mathrm{e}-16$ * $\begin{array}{lrrrr}\text { x1 } & -0.1032 & 0.3426 & -0.301 & 0.766 \\ \text { X2 } & 1.7471 & 0.3654 & 4.781 & 5.48 \mathrm{e}-05 * *\end{array}$

Signif. codes: 0 '***' 0.001 '**' $0.01^{\prime * \prime} 0.05$ '.' 0.1 ', 1
Residual standard error: 0.8601 on 27 degrees of freedom Multiple R-squared: 0.8166 , Adjusted R -squared: 0.803 F-statistic: 60.12 on 2 and 27 DF, p-value: 1.135e-10

Multicollinearity cont'd

Numerical issue \Rightarrow the matrix $\boldsymbol{X}^{T} \boldsymbol{X}$ is nearly singular

- Statistical issue
- β 's are not well estimated
- β 's may be meaningless
- R^{2} and predicted values are usually OK

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

