Lecture 6 Multiple Linear Regression II

Reading: Chapter 12

STAT 8020 Statistical Methods II September 8, 2020

Notes

Whitney Huang Clemson University

1S # N	

-

Review: Coefficient of Determination

• Coefficient of Determination R^2 describes proportional of the variance in the response variable that is predictable from the predictors

$$R^2 = \frac{\mathsf{SSR}}{\mathsf{SST}} = 1 - \frac{\mathsf{SSE}}{\mathsf{SST}}, \quad 0 \le R^2 \le 1$$

- R^2 usually increases with the increasing p, the number of the predictors
 - Adjusted $R^2,$ denoted by $R^2_{\rm adj} = 1 - \frac{{\rm SSE}/(n-p)}{{\rm SST}/(n-1)}$ attempts to account for p

Notes

$R^2 \ {\rm vs.} \ R^2_{\rm adj}$ Example

Suppose the true relationship between response Y and predictors (X_1, X_2) is

$$Y = 5 + 2X_1 + \varepsilon,$$

where $\varepsilon \sim N(0, 1)$ and X_1 and X_2 are independent to each other. Let's fit the following two models to the "data"

> Model 1: $Y = \beta_0 + \beta_1 X_1 + \varepsilon^1$ Model 2: $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon^2$

Question: Which model will "win" in terms of R^2 ?

Model 1 Fit

> summary(fit1)

```
Call:
lm(formula = y \sim x1)
```

Residuals: Min 1Q Median 3Q Max -1.6085 -0.5056 -0.2152 0.6932 2.0118

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

 (Intercept)
 5.1720
 0.1534
 33.71
 < 2e-16</td>

 x1
 1.8660
 0.1589
 11.74
 2.47e-12

 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8393 on 28 degrees of freedom Multiple R-squared: 0.8313, Adjusted R-squared: 0.8253 F-statistic: 138 on 1 and 28 DF, p-value: 2.467e-12

Model 2 Fit

> summary(fit2)

Call: $lm(formula = y \sim x1 + x2)$

Residuals: Min 1Q Median 3Q Max -1.3926 -0.5775 -0.1383 0.5229 1.8385

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 5.1792 0.1518 34.109 < 2e-16 *** 0.1593 11.923 2.88e-12 *** 0.1797 -1.274 0.213 x1 1.8994 x2 -0.2289 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8301 on 27 degrees of freedom Multiple R-squared: 0.8408, Adjusted R-squared: 0.8291 F-statistic: 71.32 on 2 and 27 DF, p-value: 1.677e-11

iple Linea LEMS

Notes

tiple Linea

LEMS#1

tiple Linea

EMS#

Notes

 R^2 : Model 1 vs. Model 2

Notes

Notes

General Linear Test

- Comparison of a "full model" and "reduced model" that involves a subset of full model predictors
- Consider a full model with k predictors and reduced model with ℓ predictors ($\ell < k$)
- Test statistic: $F^* = \frac{\text{SSE}(R) \text{SSE}(F)/(k-\ell)}{\text{SSE}(F)/(n-k-1)} \Rightarrow$ Testing H_0 that the regression coefficients for the extra variables are all zero
 - Example 1: $X_1, X_2, \cdots, X_{p-1}$ vs. intercept only \Rightarrow Overall F test
 - Example 2: $X_j, 1 \le j \le p-1$ vs. intercept only \Rightarrow t test for β_j
 - Example 3: X_1, X_2, X_3, X_4 vs. $X_1, X_3 \Rightarrow H_0: \beta_2 = \beta_4 = 0$

Multiple Linear Regression II

Species Diversity on the Galapagos Islands Revisited: Full Model

>	summary(gala_	fit2)

Call:

lm(formula = Species ~ Elevation + Area)

Residuals:

Min 1Q Median 3Q Max -192.619 -33.534 -19.199 7.541 261.514

Coefficients:

 Coefficients:
 Estimate Std. Error t value Pr(>|t|)

 (Intercept) 17.10519
 20.94211
 0.817
 0.42120

 Elevation
 0.17174
 0.05317
 3.230
 0.00325 **

 Area
 0.01880
 0.02594
 0.725
 0.47478

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 79.34 on 27 degrees of freedom Multiple R-squared: 0.554, Adjusted R-squared: 0.521 F-statistic: 16.77 on 2 and 27 DF, p-value: 1.843e-05

Multiple Linear Regression II
General Linear Test

Notes

Species Diversity on the Galapagos Islands Revisited: Reduce Model

> summary(gala_fit1)

Call: lm(formula = Species ~ Elevation)

Residuals: Min 1Q Median 3Q Max -218.319 -30.721 -14.690 4.634 259.180

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

 (Intercept) 11.33511
 19.20529
 0.590
 0.56

 Elevation
 0.20079
 0.03465
 5.795
 3.18e-06

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 78.66 on 28 degrees of freedom Multiple R-squared: 0.5454, Adjusted R-squared: 0.5291 F-statistic: 33.59 on 1 and 28 DF, p-value: 3.177e-06

Multiple Linear Regression II				
General Linear Test				

Notes

Notes

Perform a General Linear Test

- $H_0: \beta_{\text{Area}} = 0$ vs. $H_a: \beta_{\text{Area}} \neq 0$
- $F^* = \frac{(173254 169947)/(2 1)}{169947/(30 2 1)} = 0.5254$
- P-value: P[F > 0.5254] = 0.4748, where $F \sim F(1, 27)$

> anova(gala_fit1, gala_fit2) Analysis of Variance Table

Model 1: Species ~ Elevation Model 2: Species ~ Elevation + Area Res.Df RSS Df Sum of Sq F Pr(>F) 2 27 169947 1 3307 0.5254 0.4748 eneral Linear est utticollinearity ariable Selectior riteria

Itiple Linea

LEMS

P-value Calculation

sity curve

Multiple Linear

LEMS

Another Example of General Linear Test: Full Model

> full <- data = ga > anova(fu	ala))	s ~ Area	+ Eleva	tion + Near	rest +	Scruz	+ Adj
Analysis o	٥f ١	/ariance	e Table					
Response:	Spe	ecies						
	Df	Sum Sq	Mean Sq	F value	Pr(>F)			
Area	1	145470	145470	39.1262	1.826e-06	***		
Elevation	1	65664	65664	17.6613	0.0003155	***		
Nearest	1	29	29	0.0079	0.9300674			
Scruz	1	14280	14280	3.8408	0.0617324			
Adjacent	1	66406	66406	17.8609	0.0002971	***		
Residuals			3718					

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Regression II
CLEMS
General Linear Test

iacent.

Another Example of General Linear Test: Reduced Model

<pre>> reduced <- lm(Species ~ Elevation + Adjacent)</pre>
> anova(reduced)
Analysis of Variance Table

Response: Species
 DF Sum Sq Mean Sq F value
 Pr(>F)

 Elevation
 1 207828
 207828
 56.112
 4.662e-08

 Adjacent
 1 73251
 73251
 19.777
 0.0001344

 Residuals 27 100003 3704

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

6.15

6.14

Notes

Perform a General Linear Test

- $H_0: \beta_{\text{Area}} = \beta_{\text{Nearest}} = \beta_{\text{Scruz}} \text{ vs.}$ H_a : at least one of the three coefficients $\neq 0$
- $F^* = \frac{(100003 89231)/(5-2)}{89231/(30-5-1)} = 0.9657$
- P-value: P[F > 0.9657] = 0.425, where $F \sim F(3, 24)$ > anova(reduced, full)
 Analysis of Variance Table

Model 1: Species ~ Elevation + Adjacent Model 2: Species ~ Area + Elevation + Nearest + Scruz + Adjacent Res.Df RSS Df Sum of Sq F Pr(>F) 27 100003 24 89231 3 10772 0.9657 0.425 1 2

ple Linea EMS#

Notes

Multicollinearity

Multicollinearity is a phenomenon of high inter-correlations among the predictor variables

- Numerical issue \Rightarrow the matrix $X^T X$ is nearly singular
- Statistical issue
 - β's are not well estimated
 - Spurious regression coefficient estimates
 - $\bullet \ R^2$ and predicted values are usually OK

Notes

Example

• Consider a two predictor model:

 $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$

We can show

$$\hat{\beta}_{1|2} = \frac{\hat{\beta}_1 - \sqrt{\frac{\hat{\sigma}_Y^2}{\hat{\sigma}_{X_1}^2}} r_{X_1,X_2} r_{Y,X_2}}{1 - r_{X_1,X_2}^2},$$

where $\hat{\beta}_{1|2}$ is the estimated partial regression coefficient for X_1 and $\hat{\beta}_1$ is the estimate for β_1 when fitting a simple linear regression model $Y \sim X_1$

An Simulated Example

Suppose the true relationship between response Y and predictors $\left(X_{1},X_{2}\right)$ is

$$Y = 4 + 0.8X_1 + 0.6X_2 + \varepsilon,$$

where $\varepsilon \sim N(0,1)$ and X_1 and X_2 are positively correlated with $\rho=0.95.$ Let's fit the following models:

- Model 1: $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$
- Model 2: $Y = \beta_0 + \beta_1 X_1 + \varepsilon_1$
- Model 3: $Y = \beta_0 + \beta_2 X_2 + \varepsilon_2$

Notes

Scatter Plot: X_1 vs. X_2

General Linear Test Multicollinearity Variable Selection Criteria

tiple Linea

Notes

Model 1 Fit

Call: lm(formula = Y ~ X1 + X2) Residuals:

Min 1Q Median 3Q Max -1.91369 -0.73658 0.05475 0.87080 1.55150

Coefficients:

	Estimate	Std. Error	t value	Pr(>ltl)	
(Intercept)	4.0710	0.1778	22.898	< 2e-16	***
X1	2.2429	0.7187	3.121	0.00426	**
X2	-0.8339	0.7093	-1.176	0.24997	

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9569 on 27 degrees of freedom Multiple R-squared: 0.673, Adjusted R-squared: 0.6488 F-statistic: 27.78 on 2 and 27 DF, p-value: 2.798e-07

Model 2 Fit

Call: $lm(formula = Y \sim X1)$

Residuals: Min 1Q Median 3Q Max -2.09663 -0.67031 -0.07229 0.87881 1.49739

Coefficients:

 Estimate Std. Error t value Pr(>ltl)

 (Intercept)
 4.0347
 0.1763
 22.888
 < 2e-16</td>

 X1
 1.4293
 0.1955
 7.311
 5.84e-08

 X1 ----

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9634 on 28 degrees of freedom Multiple R-squared: 0.6562, Adjusted R-squared: 0.644 F-statistic: 53.45 on 1 and 28 DF, p-value: 5.839e-08

Itiple Linea LEMS

Aultiple Linea

LEMS

Notes

Model 3 Fit

Call: $lm(formula = Y \sim X2)$

Residuals: Min 1Q Median 3Q Мах -2.2584 -0.7398 -0.3568 0.8795 2.0826

Coefficients:

 Estimate Std. Error t value Pr(>ltl)

 (Intercept) 3.9882
 0.2014
 19.80
 < 2e-16</td>

 X2
 1.2973
 0.2195
 5.91
 2.33e-06

 X2 ----Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.096 on 28 degrees of freedom Multiple R-squared: 0.555, Adjusted R-squared: 0.5391 F-statistic: 34.92 on 1 and 28 DF, p-value: 2.335e-06

Notes

Variable Selection

• What is the appropriate subset size?

• What is the best model for a fixed size?

ultiple Linea LEMS

Mallows' C_p Criterion

$$\begin{split} (\hat{Y}_i - \mu_i)^2 &= (\hat{Y}_i - \mathbf{E}(\hat{Y}_i) + \mathbf{E}(\hat{Y}_i) - \mu_i)^2 \\ &= \underbrace{(\hat{Y}_i - \mathbf{E}(\hat{Y}_i))^2}_{\text{Variance}} + \underbrace{(\mathbf{E}(\hat{Y}_i) - \mu_i)^2}_{\text{Bias}^2}, \end{split}$$

where $\mu_i = E(Y_i | X_i = x_i)$

• Mean squared prediction error (MSPE): $\sum_{i=1}^{n} \sigma_{\hat{Y}_i}^2 + \sum_{i=1}^{n} (E(\hat{Y}_i) - \mu_i)^2$

• C_p criterion measure:

$$\begin{split} \Gamma_p &= \frac{\sum_{i=1}^n \sigma_{\hat{Y}_i}^2 + \sum_{i=1}^n (\mathrm{E}(\hat{Y}_i) - \mu_i)^2}{\sigma^2} \\ &= \frac{\sum \mathrm{Var}_{\mathrm{pred}} + \sum \mathrm{Bias}^2}{\mathrm{Var}_{\mathrm{error}}} \end{split}$$

Multiple Linear Regression II
CLEMS
Variable Selection Criteria

Notes

C_p Criterion

- ${\scriptstyle \odot}$ Do not know σ^2 nor numerator
- Use $\mathsf{MSE}_{X_1,\cdots,X_{p-1}} = \mathsf{MSE}_\mathsf{F}$ as the estimate for σ
- For numerator:

• Can show
$$\sum_{i=1}^{n} \sigma_{\hat{Y}_i}^2 = p\sigma^2$$

- Can also show $\sum_{i=1}^n (\mathrm{E}(\hat{Y}_i)-\mu_i)^2 = \mathrm{E}(\mathsf{SSE}_\mathsf{F})-(n-p)\sigma^2$

 $\Rightarrow C_p = \frac{\mathsf{SSE}_{-(n-p)}\mathsf{MSE}_{\mathsf{F}} + p\mathsf{MSE}_{\mathsf{F}}}{\mathsf{MSE}_{\mathsf{F}}}$

ple Linea

Notes

C_p Criterion Cont'd

Recall

$$\Gamma_p = \frac{\sum_{i=1}^n \sigma_{\hat{Y}_i}^2 + \sum_{i=1}^n (\mathbf{E}(\hat{Y}_i) - \mu_i)^2}{\sigma^2}$$

- When model is correct $E(C_p) \approx p$
- When plotting models against p
 - Biased models will fall above $C_p = p$
 - $\bullet~$ Unbiased models will fall around line $C_p=p$
 - $\bullet~$ By definition: C_p for full model equals p

Regression II

Adjusted R² Criterion

Multiple Linear Regression II

Notes

Notes

Adjusted R^2 , denoted by $R^2_{\rm adj}$, attempts to take account of the phenomenon of the R^2 automatically and spuriously increasing when extra explanatory variables are added to the model.

$$R_{\mathsf{adj}}^2 = 1 - \frac{\mathsf{SSE}/(n-p-1)}{\mathsf{SST}/(n-1)}$$

- Choose model which maximizes $R_{\rm adj}^2$
- Same approach as choosing model with smallest MSE

Predicted Residual Sum of Squares PRESS Criterion

- For each observation i, predict Y_i using model generated from other n-1 observations
- $PRESS = \sum_{i=1}^{n} (Y_i \hat{Y}_{i(i)})^2$
- Want to select model with small PRESS

le Selection a	

Other Approaches

• Akaike's information criterion (AIC)

$$n\log(\frac{\mathsf{SSE}_k}{n}) + 2k$$

• Bayesian information criterion (BIC)

$$n\log(\frac{\mathsf{SSE}_k}{n}) + k\log(n)$$

• Can be used to compare non-nested models