Lecture 6

Multiple Linear Regression II
Reading: Chapter 12

STAT 8020 Statistical Methods II

 September 8, 2020
Agenda

General Linear Test

Multicollinearity

Variable Selection Criteria

Review: Coefficient of Determination

- Coefficient of Determination R^{2} describes proportional of the variance in the response variable that is predictable from the predictors

$$
R^{2}=\frac{\mathrm{SSR}}{\mathrm{SST}}=1-\frac{\mathrm{SSE}}{\mathrm{SST}}, \quad 0 \leq R^{2} \leq 1
$$

R^{2} usually increases with the increasing p, the number of the predictors

- Adjusted R^{2}, denoted by $R_{\mathrm{adj}}^{2}=1-\frac{\mathrm{SSE} /(n-p)}{\mathrm{SST} /(n-1)}$ attempts to account for p

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Multiple Linear
Regression II CLEMS?
${ }^{6.2}$

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
R^{2} vs. $R_{\text {adi }}^{2}$ Example

Suppose the true relationship between response Y and predictors $\left(X_{1}, X_{2}\right)$ is

$$
Y=5+2 X_{1}+\varepsilon
$$

where $\varepsilon \sim \mathrm{N}(0,1)$ and X_{1} and X_{2} are independent to each other. Let's fit the following two models to the "data"

Model 1: $Y=\beta_{0}+\beta_{1} X_{1}+\varepsilon^{1}$
Model 2: $Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\varepsilon^{2}$

Question: Which model will "win" in terms of R^{2} ?

Model 1 Fit

> summary(fit1)
Call:
$\operatorname{lm}($ formula $=\mathrm{y} \sim \mathrm{x} 1)$

$\begin{array}{cccc}\text { Min } & 1 Q & \text { Median } \quad 3 Q \quad \text { Max }\end{array}$
 $-1.6085-0.5056-0.2152 \quad 0.6932 \quad 2.0118$

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) $5.1720 \quad 0.1534 \quad 33.71<2 \mathrm{e}-16^{* *}$
$\begin{array}{llllll}x 1 & 1.8660 & 0.1589 & 11.74 & 2.47 \mathrm{e}-12 & \text { *** }\end{array}$
Signif. codes:
$0^{\prime * * *} 0.001$ '**' 0.01 '*' 0.05 '. 0.1 ', 1
Residual standard error: 0.8393 on 28 degrees of freedom
Multiple R-squared: 0.8313, Adjusted R-squared: 0.8253 F-statistic: 138 on 1 and 28 DF, p-value: 2.467e-12

Model 2 Fit

> summary(fit2)
Call:
$\operatorname{lm}($ formula $=\mathrm{y} \sim \mathrm{x} 1+\mathrm{x} 2)$

Residuals:				
Min	$1 Q$	Median	$3 Q$	Max
-1.3926	-0.5775	-0.1383	0.5229	1.8385

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Multiple Linear
Regression II
CLEMSEs

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
${ }^{6.5}$

Multiple Linear Regression II Regression II
 Notes

 CLEMS\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Multiple Linear
Regression II Regression II

Multiple Linear
Regression II
CLEMS:
$R_{a d j}^{2}:$ Model 1 vs. Model 2

Notes

\qquad

Notes

- Example 3: $X_{1}, X_{2}, X_{3}, X_{4}$ vs.
$X_{1}, X_{3} \Rightarrow H_{0}: \beta_{2}=\beta_{4}=0$

Species Diversity on the Galapagos Islands Revisited: Full Model
> summary(gala_fit2)
Call:
m(formula = Species ~ Elevation + Area)

Residuals:				
Min	$1 Q$	Median	$3 Q$	Max
-192.619	-33.534	-19.199	7.541	261.514

oefficients
imate Std. Error t value $\operatorname{Pr}(\lambda 1 t 1)$
ercept) $17.10519 \quad 20.942110 .817 \quad 0.42120$

| | 0.17174 | 0.05317 | 3.230 | 0.00325 |
| :--- | :--- | :--- | :--- | :--- | :--- | *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ', 1
Residual standard error: 79.34 on 27 degrees of freedom Multiple R-squared: 0.554, Adjusted R-squared: 0.52 F-statistic: 16.77 on 2 and 27 DF, p-value: $1.843 \mathrm{e}-05$

Species Diversity on the Galapagos Islands Revisited: Reduce Model
> summary (gala_fit1)
Call:
lm(formula $=$ Species \sim Elevation)

\section*{$\begin{array}{cccc}\text { Min } & 10 & \text { Median } & 30\end{array}$ Max
 | Min | $1 Q$ | Median | $3 Q$ | Max |
| ---: | ---: | ---: | ---: | ---: |
| -218.319 | -30.721 | -14.690 | 4.634 | 259.180 |}

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) $11.33511 \quad 19.20529 \quad 0.590 \quad 0.56$
Elevation $0.20079 \quad 0.03465 \quad 5.795$ 3.18e-06 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' , 1
Residual standard error: 78.66 on 28 degrees of freedom Multiple R-squared: 0.5454, Adjusted R-squared: 0.5291 F-statistic: 33.59 on 1 and 28 DF, p-value: 3.177e-06

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Multiple Linear
Regression II CLEMS

Goneral Linear

Notes

\qquad

P-value Calculation

P -value is the shaped area under the under the density curve

Another Example of General Linear Test: Full Model
$>$ full <- lm(Species \sim Area + Elevation + Nearest + Scruz + Adjacent,
data $=$ gala)
$>$ anova(full)
Analysis of Variance Table
Response: Species
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$
Area - DF Sum Sq Mean Sq F vatue Pr(>F)
$\begin{array}{lrrrrr}\text { Area } & 1 & 145470 & 145470 & 39.1262 & 1.826 e-06 \\ \text { Elevation } & 1 & 65664 & 65664 & 17.6613 & 0.0003155^{* * *}\end{array}$
$\begin{array}{lrrrrr}\text { Elevation } & 1 & 65664 & 25664 & 17.6613 & 0.0003155 \\ \text { Nearest } & 1 & 29 & 29 & 0.0079 & 0.9300674\end{array}$
$\begin{array}{lllllll}\text { Scruz } & 1 & 14280 & 14280 & 3.8408 & 0.0617324 \text {. }\end{array}$
$\begin{array}{llllllllllll}\text { Adjacent } & 1 & 66406 & 66406 & 17.8609 & 0.0002971 & \text { *** }\end{array}$ Residuals $24 \quad 89231 \quad 3718$

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 '.’ 0.1 ' , 1

Another Example of General Linear Test: Reduced Model

```
> reduced <- lm(Species ~ Elevation + Adjacent)
 anova(reduced)
Analysis of Variance Table
Response: Species
    Df Sum Sq Mean Sq F value }\operatorname{Pr}(>F
Elevation 1 207828 207828 56.112 4.662e-08 ***
Adjacent 1% 73251 73251 19.777 0.0001344 ***
Residuals 27 100003 3704
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Multiple Linear
Regression II
CLEMS
$\underset{\text { Test }}{\text { General Linear }}$
Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Perform a General Linear Test

- $H_{0}: \beta_{\text {Area }}=\beta_{\text {Nearest }}=\beta_{\text {Scruz }}$ vs.
H_{a} : at least one of the three coefficients $\neq 0$
- $F^{*}=\frac{(100003-89231) /(5-2)}{89231 /(30-5-1)}=0.9657$
- P-value: $\mathrm{P}[F>0.9657]=0.425$, where $F \sim \mathrm{~F}(3,24)$
> anova(reduced, full)
Analysis of Variance Table
Model 1: Species ~ Elevation + Adjacent
Model 2: Species ~Area + Elevation + Nearest + Scruz + Adjacent
Res.Df RSS Df Sum of Sq F Pr(>F)
$\begin{array}{llllllll}1 & 24 & 89231 & 3 & 10772 & 0.9657 & 0.425\end{array}$

Multicollinearity

Multicollinearity is a phenomenon of high inter-correlations among the predictor variables

- Numerical issue \Rightarrow the matrix $\boldsymbol{X}^{T} \boldsymbol{X}$ is nearly singular
- Statistical issue
- β 's are not well estimated
- Spurious regression coefficient estimates
- R^{2} and predicted values are usually OK

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Multiple Linear Multiple Linear
Regression II Regesson " CLEMS

Multicollinearity

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

An Simulated Example

Suppose the true relationship between response Y and predictors $\left(X_{1}, X_{2}\right)$ is

$$
Y=4+0.8 X_{1}+0.6 X_{2}+\varepsilon,
$$

where $\varepsilon \sim \mathrm{N}(0,1)$ and X_{1} and X_{2} are positively correlated with $\rho=0.95$. Let's fit the following models:

- Model 1: $Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\varepsilon$
- Model 2: $Y=\beta_{0}+\beta_{1} X_{1}+\varepsilon_{1}$
- Model 3: $Y=\beta_{0}+\beta_{2} X_{2}+\varepsilon_{2}$

Scatter Plot: X_{1} vs. X_{2}

Model 1 Fit

Call:
m(formula = Y ~ X1 + X2

Residuals:				
Min	$1 Q$	Median	30	Max
-1.91369	-0.73658	0.05475	0.87080	1.55150

Multiple Linear
Regression II
CLEMS

Multicollinearity
${ }^{6.20}$

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Model 2 Fit

Call:
Lm(formula $=Y \sim X 1$)

Residuals:				
Min	$1 Q$	Median	$3 Q$	Max
-2.09663	-0.67031	-0.07229	0.87881	1.49739

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) $4.0347 \quad 0.1763 \quad 22.888<2 \mathrm{e}-16^{* * *}$ $\begin{array}{lllll} & 1.4293 & 0.1955 & 7.311 & 5.84 \mathrm{e}-08^{* * *}\end{array}$ Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ $0.05^{\text {'. }} 0.1$ ' ' 1

Residual standard error: 0.9634 on 28 degrees of freedom Multiple R-squared: 0.6562, Adjusted R-squared: 0.644 F-statistic: 53.45 on 1 and 28 DF , p-value: $5.839 \mathrm{e}-08$

Model 3 Fit

Call:
lm(formula $=\mathrm{Y} \sim \mathrm{X}$)

Residuals:

Min $1 Q$ Median $3 Q \quad$ Max
$\begin{array}{llllll}-2.2584 & -0.7398 & -0.3568 & 0.8795 & 2.0826\end{array}$
Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) $3.9882 \quad 0.2014 \quad 19.80<2 \mathrm{e}-16^{* * *}$
$\begin{array}{llllll} & 1.2973 & 0.2195 & 5.91 & 2.33 \mathrm{e}-06^{* * *}\end{array}$
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 ', 0.1 ', 1
Residual standard error: 1.096 on 28 degrees of freedom
Multiple R-squared: 0.555, Adjusted R-squared: 0.5391 F-statistic: 34.92 on 1 and 28 DF, p-value: $2.335 \mathrm{e}-06$

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Multiple Linear
Regression II \quad Notes CLEMSen

Multicollinearity riable Sele \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Mallows' C_{p} Criterion

$$
\begin{aligned}
\left(\hat{Y}_{i}-\mu_{i}\right)^{2} & =\left(\hat{Y}_{i}-\mathrm{E}\left(\hat{Y}_{i}\right)+\mathrm{E}\left(\hat{Y}_{i}\right)-\mu_{i}\right)^{2} \\
& =\underbrace{\left(\hat{Y}_{i}-\mathrm{E}\left(\hat{Y}_{i}\right)\right)^{2}}_{\text {Variance }}+\underbrace{\left(\mathrm{E}\left(\hat{Y}_{i}\right)-\mu_{i}\right)^{2}}_{\text {Bias }^{2}},
\end{aligned}
$$

where $\mu_{i}=\mathrm{E}\left(Y_{i} \mid X_{i}=x_{i}\right)$

- Mean squared prediction error (MSPE):
$\sum_{i=1}^{n} \sigma_{\hat{Y}_{i}}^{2}+\sum_{i=1}^{n}\left(\mathrm{E}\left(\hat{Y}_{i}\right)-\mu_{i}\right)^{2}$
- C_{p} criterion measure:

$$
\begin{aligned}
\Gamma_{p} & =\frac{\sum_{i=1}^{n} \sigma_{\hat{Y}_{i}}^{2}+\sum_{i=1}^{n}\left(\mathrm{E}\left(\hat{Y}_{i}\right)-\mu_{i}\right)^{2}}{\sigma^{2}} \\
& =\frac{\sum \operatorname{Var}_{\text {pred }}+\sum \operatorname{Bias}^{2}}{\mathrm{Var}_{\text {error }}}
\end{aligned}
$$

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Muttiple Linear
Regression II
CLEMS

Multicolineantiy
Variable Selection
Criteria \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad

Multiple Linear Regression II CLEMSWN

Variable Selection Variable Selection Criteria

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
C_{p} Criterion

- Do not know σ^{2} nor numerator
- Use MSE ${ }_{X_{1}, \cdots, X_{p-1}}=$ MSE $_{\mathrm{F}}$ as the estimate for σ
- For numerator:
- Can show $\sum_{i=1}^{n} \sigma_{\hat{Y}_{i}}^{2}=p \sigma^{2}$
- Can also show
$\sum_{i=1}^{n}\left(\mathrm{E}\left(\hat{Y}_{i}\right)-\mu_{i}\right)^{2}=\mathrm{E}\left(\mathrm{SSE}_{\mathrm{F}}\right)-(n-p) \sigma^{2}$
$\Rightarrow C_{p}=\frac{\mathrm{SSE}_{-(n-p) \mathrm{MSE}_{\mathrm{F}}+p \mathrm{MSE}_{\mathrm{F}}}^{\mathrm{MSE}_{\mathrm{F}}}}{\mathrm{S}^{2}}$

Recall

$$
\Gamma_{p}=\frac{\sum_{i=1}^{n} \sigma_{\hat{Y}_{i}}^{2}+\sum_{i=1}^{n}\left(\mathrm{E}\left(\hat{Y}_{i}\right)-\mu_{i}\right)^{2}}{\sigma^{2}}
$$

When model is correct $\mathrm{E}\left(C_{p}\right) \approx p$

- When plotting models against p
- Biased models will fall above $C_{p}=p$
- Unbiased models will fall around line $C_{p}=p$
- By definition: C_{p} for full model equals p

Adjusted R^{2} Criterion

Adjusted R^{2}, denoted by $R_{\text {adj; }}^{2}$, attempts to take account of the phenomenon of the R^{2} automatically and spuriously increasing when extra explanatory variables are added to the model.

$$
R_{\mathrm{adj}}^{2}=1-\frac{\operatorname{SSE} /(n-p-1)}{\operatorname{SST} /(n-1)}
$$

- Choose model which maximizes $R_{\text {adj }}^{2}$
- Same approach as choosing model with smallest MSE

Predicted Residual Sum of Squares $P R E S S$ Criterion

- For each observation i, predict Y_{i} using mode generated from other $n-1$ observations
- PRESS $=\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i(i)}\right)^{2}$
- Want to select model with small PRESS

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Multiple Linear
Regression II

Notes

CLEMS*

Variable Selection Criteria
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

