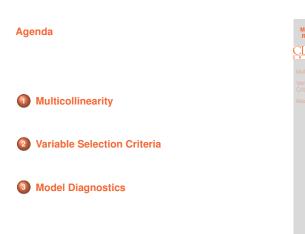
Lecture 7 Multiple Linear Regression III

Reading: Chapter 13

STAT 8020 Statistical Methods II September 10, 2020 Multiple Linear Regression III

Notes

Whitney Huang Clemson University



ultiple Linear legression III EMSERIE ticollinearity lable Selection eria del Diagnostics

Notes

Multicollinearity is a phenomenon of high inter-correlations among the predictor variables

- Numerical issue \Rightarrow the matrix $X^T X$ is nearly singular
- Statistical issue

Multicollinearity

- β 's are not well estimated
- Spurious regression coefficient estimates
- $\bullet \ R^2$ and predicted values are usually OK

Example

• Consider a two predictor model:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$$

• We can show

$$\hat{\beta}_{1|2} = \frac{\hat{\beta}_1 - \sqrt{\frac{\hat{\sigma}_Y^2}{\hat{\sigma}_{X_1}^2}}r_{X_1,X_2}r_{Y,X_2}}{1 - r_{X_1,X_2}^2},$$

where $\hat{\beta}_{1|2}$ is the estimated partial regression coefficient for X_1 and $\hat{\beta}_1$ is the estimate for β_1 when fitting a simple linear regression model $Y \sim X_1$

An Simulated Example

Suppose the true relationship between response Y and predictors $\left(X_{1},X_{2}\right)$ is

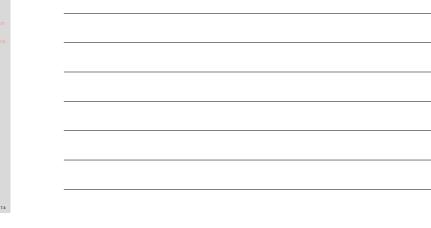
 $Y = 4 + 0.8X_1 + 0.6X_2 + \varepsilon,$

where $\varepsilon \sim N(0,1)$ and X_1 and X_2 are positively correlated with $\rho=0.95.$ Let's fit the following models:

- Model 1: $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$
- Model 2: $Y = \beta_0 + \beta_1 X_1 + \varepsilon_1$
- Model 3: $Y = \beta_0 + \beta_2 X_2 + \varepsilon_2$

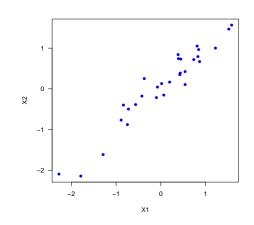
-

Notes



Notes

Scatter Plot: X_1 vs. X_2



Model 1 Fit

Call: lm(formula = Y ~ X1 + X2)

Residuals: Min 1Q Median 3Q Max -1.91369 -0.73658 0.05475 0.87080 1.55150

Coefficients:

 Estimate Std. Error t value Pr(>ltl)

 (Intercept)
 4.0710
 0.1778
 22.898
 < 2e-16 ***</td>

 X1
 2.2429
 0.7187
 3.121
 0.00426 **

 X2
 -0.8339
 0.7093
 -1.176
 0.24997

 -- Signif. codes:
 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Signif. codes: 0 **** 0.001 *** 0.01 ** 0.05 . 0.1 ***

Residual standard error: 0.9569 on 27 degrees of freedom Multiple R-squared: 0.673, Adjusted R-squared: 0.6488 F-statistic: 27.78 on 2 and 27 DF, p-value: 2.798e-07

Multiple Linear Regression III

Notes

Notes

Model 2 Fit

Call: lm(formula = Y ~ X1)

Residuals:

Min 1Q Median 3Q Max -2.09663 -0.67031 -0.07229 0.87881 1.49739

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

 (Intercept)
 4.0347
 0.1763
 22.888
 < 2e-16 ***</td>

 X1
 1.4293
 0.1955
 7.311
 5.84e-08 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9634 on 28 degrees of freedom Multiple R-squared: 0.6562, Adjusted R-squared: 0.644 F-statistic: 53.45 on 1 and 28 DF, p-value: 5.839e-08

Regression III
CLEMS
Multicollinearity

Multiple Linear

Model 3 Fit

Call: lm(formula = Y ~ X2)

Residuals: Min 1Q Median 3Q Max -2.2584 -0.7398 -0.3568 0.8795 2.0826

Coefficients:

 Contraction
 Estimate Std. Error t value Pr(>|t|)

 (Intercept)
 3.9882
 0.2014
 19.80
 < 2e-16</td>

 X2
 1.2973
 0.2195
 5.91
 2.33e-06

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.096 on 28 degrees of freedom Multiple R-squared: 0.555, Adjusted R-squared: 0.5391 F-statistic: 34.92 on 1 and 28 DF, p-value: 2.335e-06

Notes

Itiple Linear

LEMS

Variance Inflation Factor (VIF)

We can use the variance inflation factor (VIF)

$$\mathsf{VIF}_i = \frac{1}{1 - \mathsf{R}_i^2}$$

to quantifies the severity of multicollinearity in MLR, where R_i^2 is the **coefficient of determination** when X_i is regressed on the remaining predictors

Notes

Variable Selection

Multiple Linear Regression Model:

$Y_i = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_{p-1} X_{p-1} + \varepsilon_i, \quad \varepsilon_i \stackrel{i.i.d.}{\sim} \mathrm{N}(0, \sigma^2)$

- What is the appropriate subset size?
- What is the best model for a fixed size?

In the next few slides we will discuss some commonly used model selection criteria

Notes

Notes

Mallows' C_p Criterion

$$\begin{split} (\hat{Y}_i - \mu_i)^2 &= (\hat{Y}_i - \mathbf{E}(\hat{Y}_i) + \mathbf{E}(\hat{Y}_i) - \mu_i)^2 \\ &= \underbrace{(\hat{Y}_i - \mathbf{E}(\hat{Y}_i))^2}_{\text{Variance}} + \underbrace{(\mathbf{E}(\hat{Y}_i) - \mu_i)^2}_{\text{Bias}^2} \end{split}$$

where $\mu_i = E(Y_i | X_i = x_i)$ • Mean squared prediction error (MSPE): $\sum_{i=1}^n \sigma_{\hat{Y}_i}^2 + \sum_{i=1}^n (E(\hat{Y}_i) - \mu_i)^2$

• C_p criterion measure:

$$\begin{split} \Gamma_p &= \frac{\sum_{i=1}^n \sigma_{\hat{Y}_i}^2 + \sum_{i=1}^n (\mathrm{E}(\hat{Y}_i) - \mu_i)^2}{\sigma^2} \\ &= \frac{\sum \mathrm{Var}_{\mathrm{pred}} + \sum \mathrm{Bias}^2}{\mathrm{Var}_{\mathrm{error}}} \end{split}$$

C_p Criterion

- Do not know σ^2 nor numerator
- Use $\mathsf{MSE}_{X_1,\cdots,X_{p-1}} = \mathsf{MSE}_\mathsf{F}$ as the estimate for σ
- For numerator:
 - Can show $\sum_{i=1}^{n} \sigma_{\hat{Y}_i}^2 = p\sigma^2$
 - Can also show $\sum_{i=1}^{n} (\mathrm{E}(\hat{Y}_i) \mu_i)^2 = \mathrm{E}(\mathsf{SSE}_\mathsf{F}) (n-p)\sigma^2$

 $\Rightarrow C_p = \frac{\mathsf{SSE}_{-}(n-p)\mathsf{MSE}_\mathsf{F} + p\mathsf{MSE}_\mathsf{F}}{\mathsf{MSE}_\mathsf{F}}$

Notes

Notes

C_p Criterion Cont'd

Recall

 $\Gamma_p = \frac{\sum_{i=1}^n \sigma_{\hat{Y}_i}^2 + \sum_{i=1}^n (\mathbf{E}(\hat{Y}_i) - \mu_i)^2}{\sigma^2}$

- When model is correct $E(C_p) \approx p$
- When plotting models against p
 - ${\ensuremath{\, \bullet }}$ Biased models will fall above $C_p=p$
 - ${\ensuremath{\,\circ\,}}$ Unbiased models will fall around line $C_p=p$
 - By definition: C_p for full model equals p

Adjusted R² Criterion

the model.

Adjusted R^2 , denoted by R^2_{adj} , attempts to take account of the phenomenon of the R^2 automatically and spuriously increasing when extra explanatory variables are added to

$$R_{\mathsf{adj}}^2 = 1 - \frac{\mathsf{SSE}/(n-p-1)}{\mathsf{SST}/(n-1)}$$

- Choose model which maximizes R²_{adj}
- Same approach as choosing model with smallest MSE

Predicted Residual Sum of Squares PRESS Criterion

- For each observation i, predict Y_i using model generated from other n-1 observations
- $PRESS = \sum_{i=1}^{n} (Y_i \hat{Y}_{i(i)})^2$
- Want to select model with small PRESS

Regression III
Variable Selectio Criteria

Notes

Other Approaches: Information criteria

• Akaike's information criterion (AIC)

$$n\log(\frac{\mathsf{SSE}_k}{n})+2k$$

Bayesian information criterion (BIC)

$$n\log(\frac{\mathsf{SSE}_k}{n}) + k\log(n)$$

• Can be used to compare non-nested models

Notes

Automatic Search Procedures

- Forward Selection
- Backward Elimination
- Stepwise Search
- All Subset Selection

Model Assumptions Model: Multiple Linear Regression III

We make the following assumptions:

Linearity:

 $E(Y|X_1, X_2, \cdots, X_{p-1}) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_{p-1} X_{p-1}$

• Errors have constant variance, are independent, and normally distributed

 $Y_i = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_{p-1} X_{p-1} + \varepsilon_i, \quad \varepsilon_i \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \sigma^2)$

 $\varepsilon_i \overset{i.i.d.}{\sim} \mathcal{N}(0, \sigma^2)$

Notes

Notes